Edited, memorised or added to reading queue

on 12-Sep-2024 (Thu)

Do you want BuboFlash to help you learning these things? Click here to log in or create user.

Flashcard 7642558369036

Question
Was wird bei Predict-Taken mit Sprüngen gemacht?
Answer
erstmal ausführen

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Wie funktioniert die Predict-Not-Taken bzw. Predict-Taken Methodik? Hier wird nichts weiter gemacht als entweder alle Sprünge voreingestellt abzulehnen oder alle Sprünge ersteinmal ohne Gewähr duchzuführen. Allgemeine Programmstatistiken sagen aus, dass mehr bedingte Sprünge ausgeführt als abgewiesen werden.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
und das selbe Register schreiben. Hier muss sichergestellt werden, daß die Schreibreihenfolge der der Befehle entspricht. Beide Abhängigkeiten können durch Register Renaming vermindert werden! <span>Kapitel 7 - Branch Prediction Control Hazards (Jump / Branch Problematik) Sprungbefehle stellen einen Dorn im Auge einer jeden Pipeline dar, da diese besondere Vorkehrungen erfordern. Da das Ziel eines Sprungbefehles oft erst festgestellt werden muss, liegt diese Adresse erst ab der MEM ACCESS Phase bereit. Somit kann das erneute Laden des Programmcounters auch erst in dieser Phase geschehen. So verzögert sich das Holen des nächsten Befehles um einige Takte. Durch eine Optimierung der Pipeline kann zwar die stall-Phase verkleinert, aber nicht ausgeschlossen werden. (durch Verlegung des Sprungbedingungstests in die Decode-Phase) Welche Methoden gibt es zur Reduzierung von Sprungverlusten? Predict Not Taken / Predict-Taken (fixed prediction) Objektcode basiert (statisch) dynamisch Brach-Prediction mit History Buffern (correlating / non-correlating) Delayed-Branch Wie funktioniert die Predict-Not-Taken bzw. Predict-Taken Methodik? Hier wird nichts weiter gemacht als entweder alle Sprünge voreingestellt abzulehnen oder alle Sprünge ersteinmal ohne Gewähr duchzuführen. Allgemeine Programmstatistiken sagen aus, dass mehr bedingte Sprünge ausgeführt als abgewiesen werden. Wie funktioniert die Delayed-Branch Methode? Hier wird ein sprungunabhängiger Befehl in den Delay Slot eingeschleust. Dies muss somit schon von den Compilerbauern berücksichtigt werden. Um diese Bedingung zu Umgehen wird die "Cancelling Branches"-Technik eingesetzt. Im Mittel werden dann trotzdem die Branch-Verluste verringert. Durch ein zusätzliches Bit im Befehlscode gibt der Compiler die wahrscheinlichste Sprungrichtung an. Nun kann entsprechend dieser Annahme ein Befehl in den Delay Slot eingefügt werden, der nur gültig ist, wenn der Sprung richtig vorhergesagt war. Falls nicht wird der Delay-Slot-Befehl abgebrochen (gecancelt). Dynamische Branch-Prediction Um Wartezeiten durch bedingte Sprünge zu vermeiden, sollte das Sprungziel schon mit dem Ende der Fetch-Phase zur Verfügung stehen. Es gibt zwei Ansätze Sprungzielspeicher (branch-target-buffer = BTB) Sprungvorhersage-Puffer (Branch History Table = BHT) Wie arbeitet eine Branch History Table? In dieser Tabelle wird im Grunde nur durch ein Bit (oder mehr) vermerkt, ob ein Sprung durchgeführt wurde oder nicht. Als Index der Tabelle dient der niederwertige Teil der Adresse des dazugehörigen Sprungbefehls. Nun kann die Pipeline in der Fetchphase nach einem eventuell vorhandenen Eintrag schauen und diesen als Entscheidungsgrundlage nehmen. Welchen Nachteil hat die 1-Bit Sprungvorhersage? Es wird nicht nur bei einem Schleifenaustritt der Sprung falsch vorhergesagt, sondern auch die erste Vorhersage bei erneuter Verwendung der Schleife. Wie arbeitet die 2-Bit-Sprungvorhersage mit BHT? Durch einen einfachen Zähler kann man den Nachteil der 1-Bit-Vorhersage minimieren. Hier wird die Vorhersage erst geändert, wenn sie zweimal falsch war. Es hat sich gezeigt, daß durch Zähler mit mehr als 2 Bit sich die Performance nicht weiter signifikant erhöhen läßt. Abb.: 2-Bit-Sprungvorhersagenautomat Wie arbeitet der Branch-Target-Buffer? Hier wird die Zieladresse eines gemachten Sprungs direkt gespeichert, um diese gegebenfalls ohne Verzögerung wiederzuverwenden. So kann bei einem Hit (Index stimmt mit Befehlsadresse überein) sofort der Instruction Counter mit der dazugehörigen Sprungadresse geladen werden). Exeptions Exeptions unterbrechen den Programmablauf Aufgrund verschiedenster Fehler oder Anforderungen, wie Softwareinterrupts, Page Faults oder anderen Verletzungen. Bei synchronen Exeptions treten die Fehler stehts an der gleichen Programmstelle auf. Asynchrone werden durch externe Geräte ausgelöst und können nach dem laufenden Befehl ausgeführt werden. Was sind Precice Exeptions? Sind Exeptions, welche garantieren, dass die Exeptions direkt nach oder während des Befehles ausgeführt werden und kein Folgebefehl vorher abgearbeitet wird. Zusammenfassung der Sprungvorhersage Sprungvorhersage ist extrem wichtig für Pipelining und Superskalarität, um stalls und Verzögerungen zu minimieren. Bei statischer Vorhersage werden Rückwärtssprünge meist erst durchgeführt und Vorwärtssprünge nicht. Wurde ein Sprung falsch vorhergesagt, muss die angefangene Instruktion rückgängig gemacht werden, was aufwendig ist. Deshalb gibt es ausgeklügelte Verfahren für die Branch Prediction. Statische Sprungvorhersage Es werden Compiler benutzt, die spezielle Sprungbefehle mitführen, welche ein Bit für die Sprungvorhersage enthalten. Da der Compiler ja weiß, wie oft eine Schleife durchlaufen wird, ist das sehr effizient. Dies muss aber architektonisch von der Hardware unterstützt werden. Des Weiteren ist kein Speicher für die History Table notwendig, was es kostengünstiger macht. Statische Verfahren erreichen eine Trefferrate von 65 bis 85%, was für moderne CPU's mit Superpipelines zu wenig ist. Dynamische Verfahren erreichen Trefferraten bei der Vorhersage von 98% und mehr! Dynamische Sprungvorhersage Es gibt zwei grundlegende Methoden. BHT und BTB. Die Branch History Table (Branch Predicion Buffer) ist ein Cache, in der alle bedingten Sprünge protokolliert werden. ( bis zu mehereren Tausend) Einfachste Version enthält ein Valid-Bit (Branch taken oder nicht), welches durch den niederwertigen Teil der Sprungadresse adressiert wird. Kompliziere Implementationen arbeiten nach dem n-Wege Prinzip. Durch Second Chance kann dieses Verfahren noch verbessert werden. Der Branch Target Buffer speichert nicht nur die taken-Bits, sondern auch die Sprungzieladresse, um null Verluste bei wiederholtem Aufruf zu haben. Das setzt voraus, dass nur taken branches aufgenommen werden. Bei einem Hit in der BTB kann somit während der Fetch Phase der Program Counter überschrieben werden. Werden keine History Bits mitgeführt spricht man vom BTAB. Wie arbeitet Second Chance? Nach Beenden einer Schleife wird ein Sprung logischerweise falsch vorhergesagt. Um zu vermeiden, dass nun fälschlicherweise das Sprungbit falsch gesetzt wird (da ja die gleiche Schleife noch mal durchlaufen werden kann), ändert man dieses erst nach der zweiten falschen Vorhersage. Leicht zu implementieren als Finite State Machine mit vier Zuständen. Nachteil der dynamischen Vorhersage ist die notwendige teuere und komplexere Hardware. Was ist der Vorteil von BHT gegenüber BTB? Branch Target Buffer loggen nur, ob ein Sprung genommen wurde oder nicht. Daher gibt es bei MIPS-Architekturen die BTB verwenden immernoch die sogenannten Branch Delay Slots, da die Sprungadresse trotzdem neu ermittelt werden muss. BHT beseitigen diesen Nachteil, da sie die Sprungadresse mit abspeichern und diese dann sofort in den IP geladen werden kann. Was sind Correlating Predictors? Betrachten wir folgendes Codefragment, fällt uns auf, daß ein Branch Predictor, der nur einen Sprung als Entscheidungsgrundlage einbezieht, den Zusammenhang der drei Sprünge nicht erkennen kann. if (a==10) //1. Sprung a=0; if (b=0) //2. Sprung b=0; if (a!=b){ //3. Sprung ... //abhängig von 1. und 2. Sprung } Um diese Abhängigkeiten in eine Sprungvorhersage einbeziehen zu können, sind Correlating Predictors notwendig. Solche Einheiten werden oft als (m,n)-Predictors bezeichnet. protokolliert wird das Verhalten der letzten m Sprünge je mit einem n-Bit Predictor (z.B. 2-Bit Second Chance) somit wird aus 2^m*n-Bit Preticors ausgewählt, um Vorhersage für den jeweiligen Sprung zu treffen Wie werden Correlating Predictors hardwaremäßig implementiert? Das Implementieren dieser Predictors ist weitaus einfacher, als man es annehmen würde. Es wird einfach für die History-Bits ein m-Bit-Shift Register verwendet, um die letzten m Sprünge zu speichern. Welche Performancesteigerung ist durch Correlating Predictors erreichbar? Eqntott ist ein Benchmark, welches speziell mehrere voneinander abhängige Sprünge simuliert. Hier sinkt die Fehlvorhersage von 20% auf unter 8%! Beim GCC-Compiler sind dagegen keine Unterschiede zwischen Correlating Predictors und normaler 2-Bit Sprungvorhersage erkennbar. Kapitel 8 - Superskalarität Was bedeutet superskalar? Mit normalen Pipelines (Überlappen von Instruktionen) ist nur eine maximale Performance von einem Befehl / Takt technisch und theor







Flashcard 7655170379020

Question
Im [...] werden Anwendungen und Betriebssystem strikt getrennt.
Answer
Protected Mode

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle

Original toplevel document

Grundprinzipien der Rechnerarchitektur
s den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) <span>Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Speicherschutzsystem notwendig. Segmente zum schützen von Speicherbereichen Segmente sind logische Speicherbereiche variabler Länge (Pages sind normalerweise gleich groß und ergeben zusammengesetzt ein Segment). In einem Segment ist wiederum eine Aufteilung in Code-, Daten- und Speichersegment zu finden. Jedes Segment definiert ein Objekt, welches eindeutig über einen Deskriptor mit Basisadresse, Zugriffsrechten und Limit beschieben wird. Auf Basis dieser Segmente arbeitet die komplette Speicherverwaltung eines Rechners. Wie wird auf Segmente zugegriffen? Segmente werden über eine Deskriptortabelle indiziert. Die Tabellen enthalten Pointer auf die Speicherbereiche der jeweiligen Segmente. Was ist das besondere am segmentierten Adreßraum? Adressen auf Basis von Segmenten sind im unterschied zu linearen Adressen zweidimensional. Sie bestehen aus Segment und Offset. Berechnet werden sie durch einfache Addition von Segment und Offset. Vor der Addition ist das Segment um 4 Stellen nach links zu verschieben. 0002 : 000F berechnet sich also aus 0020 + 000F = 0001F Was sind die Nachteile des Realmodes? Begrenzung eines Segments auf maximal 64 KB, da Offsetadresse nur 16 Bit groß ist Es nur das erste MByte durch das Betriebssystem adressierbar kein Schutz des Speichers vor anderen Programmen Einträge aus der Interruptvektor-Tabelle sind leicht veränderbar nur ein Programm kann ausgeführt werden Was hat Multitasking mit Protected Mode zu tun? Multitasking kann nur durch Protected Mode arbeiten. Er ist sozusagen Grundlage für alle multitaskingfähigen Betriebssysteme. nsbesondere geht es um gegenseitigen Schutz der laufenden Tasks Taskwechselunterstützung durch das Betriebssystem Privilegierungsmechanismen Betriebssystemfunktionen zur Verwaltung von virtuellen Speicher Getrennte Stacks für Parameterübergabe Lösung des "Trojanischen Pferd" Problems Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes. Aus welchen beiden Teilen besteht eine Virtuelle Adresse? Eine virtuelle Adresse beinhaltet den Segmentselektor, welcher auf einen Eintrag in der Deskriptortabelle zeigt. Das Segment-Offset zeigt auf die dazugehörige Adresse in dem selektierten Segment. Aus welchen drei Teilen setzt sich ein Segmentselektor zusammen? Aus dem Index, der den Eintrag in der Deskriptortabelle referenziert, dem Table Indicator, welcher über globalem oder lokalem Adressraum entscheidet und den Privelege Level. TI - Table Indicator 0 = GDT (Global Deskriptor Table für den globalen Adreßraum) 1 = LDT (Local Deskriptor Table für den lokalen Adreßraum) RPL Requestor's Privilege Level Privilegstufe des Segments, auf welches der Selektor verweist Was ist ein Deskriptor? Deskriptoren sind Abbildungen zwischen der virtuellen bzw. logischen Adresse (Segmentselektor:Offset) und der linearen Adresse (Basisadresse und Offset). Aus der linearen Adresse wird dann die physikalische Adresse berechnet. (bei i286 war die lineare Adresse noch gleich der physikalischen Adresse, da es noch keine Paging-Einheit gab) Was steht alles in so einem Eintrag in der Deskriptortabelle? Die "normalen" Deskriptoren, welche einen normalen Adressraum (Daten-, Code- oder Stacksegment) beschreiben, enthalten die Basisadresse des Segmentes im Speicher die Zugriffsrechte die Länge des Segmentes Eine andere Klasse von Deskriptoren sind System-Segment-Deskriptoren und zur Ablaufsteuerung notwendige Deskriptoren. Erstere definieren Einsprungpunkte in spezielle System-Unterroutinen oder Gates. Letztere sind Deskriptoren für Task-State-Segmente oder Local-Deskriptor-Tables. Aktiv sind aber immer nur eine globale, eine lokale Interrupt-Beschreibertabelle und eine Interrupt-Beschreibertabelle. Was ist ein Gate? Gates sind spezielle Eintritts-Deskriptoren in Segmente höherer Privilegstufe. (Interrupt- oder Trap-Gate-Deskriptoren) Worin unterscheiden sich GDT und LDT? Die Global Descriptor Table einhält Segmente des globalen Adressraums, welcher für alle Tasks zur Verfügung steht. Dagegen sind mit Local Descriptor Table allokierte Segmente nur von den Host-Tasks selbst adressierbar. (privater Adressraum) Lokale Deskriptortabellen sind Grundlage für die Task-Isolation und daher extrem wichtig für Sicherheit und Segmentschutz. Beschreiben Sie den Aufbau einer Globalen Deskriptortabelle ... ... Globale C/D2 Globale Code-/Daten-Deskriptoren Globale C/D1 Globale Code-/Daten-Deskriptoren ... ... System D2 Gates bzw. TSS-Deskriptoren System D1 Gates bzw. TSS-Deskriptoren ... ... ... ... LDT 2 Lokale Deskriptoren für individuellen Task LDT 1 Lokale Deskriptoren für individuellen Task ... ... ... ... IDT 2 Interrupt/Exeption Gates bzw. Deskriptoren IDT 1 Interrupt/Exeption Gates bzw. Deskriptoren GTD_alias ermöglicht dynamischen Zugriff auf die GDT 0-Selektor Zugriff auf 0-Selektor führt zu Exeption Was unterscheidet Real-Mode und Protected-Mode? Im Real-Mode gibt es keine Deskriptoren und somit ist auch kein Segmentschutz möglich. Die Basisadresse berechnet sich einfach aus dem Segment-Register, welches maximal 1 MByte adressieren kann, da es nur 20 Bit breit ist. Im Protected-Mode werden die Basisadressen mittels Deskriptoren bestimmt. Auf Grund dieser Unterschiede sind folgende Merkmale für den Protected-Mode signifikant: Virtuelle Speicherverwaltung Speicherschutzmechanismen durch Segmentation (über Deskriptoren) Paging möglich echtes Multitasking möglich I/O-Privilegierung und privilegierte Befehle Was ist Paging und wie funktioniert es? Paging wird ab i386 vom Prozessor unterstützt und ist nichts weiter als eine Einteilung des Speichers in gleich große Seiten. Vorteil des virtuellen Speichers, welcher durch Mapping oder Paging erst möglich ist, sind für Anwendungen theoretisch unendlich großen Arbeitsspeicher. Grund dafür ist, dass der Tertiärspeicher als Zwischenspeicher für schlafende oder temporär nicht notwendige Seiten ausgenutzt wird. Es gibt ausgeklügelte Seitenerstetzungsalgorithmen, welche das Austauschen von Seiten übernehmen. Ein weiteres Problem was beim Paging gelöst werden muss, ist die eventuell entstehende Inkonsistenz. D ieses Problem wird wie bekanntermaßen üblich durch Dirty-Bits in den Pages gelöst. Verwirrend ist anfangs der Zusammenhang von Segmentierung und Paging. Letztendlich laufen beide Technologien gleichzeitig auf einem modernen System und ergänzen sich gegenseitig. Paging ist hinter den Segmentierungsvorgang geschalten, um Transparenz zu gewährleisten. Die durch die Segmentierung berechnete bzw. übergebene lineare Adresse entspricht ohne Paging der physikalischen. Falls Paging aktiv ist, muss noch etwas mehr getan werden. Die Umsetzung von Linearer in Physikalischer Adresse hängt vom verwendeten Paging ab. Normalerweise wird über die ersten Bits die Page-Table referenziert und über die folgenden der Pagetable-Eintrag, aus dem die Basisadresse geholt wird. Der Offset wird normalerweise beibehalten. Beschreiben Sie was bei einem Page-Fault intern alles abläuft? Während Abarbeitung einer Befehlssequenz erfolgen mehrere Seitenzugriffe Es erfolgt ein Zugriff auf eine Seite. Prozessor prüft die Seite (ist sie im Speicher?). Seite gibt Page Not Present State zurück (d.h. Seite nicht im Speicher) CPU löst Page Fault Exception aus (Siehe System-Aufruf-Deskriptoren) Betriebssystem gibt in Auftrag die Seite von Platte zu holen Prozessor aktiviert Festplattenhardware und positioniert Leseköpfe Seite wird über DMA-Transfer von Disk-To-free Memory übertragen Betriebssystem aktualisiert Pagetable einschließlich des TLB (flush TLB) Betriebssystem startet den unterbrochenen Befehl neu Nennen Sie Vorteile und Nachteile des Pagings gegenüber Segmentation-Only! Performanceerhöhung eines Multitasking-Betriebssystems Verwaltung der Swap-Datei wird durch die Verwendung konstanter Speicherblöcke einfacher nur die 4-KByte werden eingelagert, die tatsächlich benötigt werden und nicht das gesamte Segment Nachteile: Ausführung verzögert sich, weil die Adresse erst dekodiert werden muß bei Zugriff auf eine Seite/Page evtl. erst Einlagerung dieser vom Sekundärspeicher notwendig (Present-Bit) Wie kann man die Adressdekodierung beim Paging umgehen? Durch Translation Lookaside Buffer. Ein TLB ist ein assoziativer Vierwege-Cache, welcher die 32 Page-Table-Einträge aufnimmt, auf die der Prozessor zuletzt zugegriffen hat (LRU-Strategie). Ein TLB Eintrag besteht aus drei logischen Blöcken: Datenblock mit Page-Attributen und physikalische Basisadresse einer Page Tagblock enthält die oberen 17 Bit einer linearen Adresse und Schutz-Bits LRU-Block (Least Recently Used) zeigt letzten Zugriff an Page- und Segmentschutz Zuerst wirkt der Segmentschutz und danach Pageschutz. Pageschutz ist nur 2-stufig. Die inneren drei Privilegebenen sind beim Paging als Supervisor-Code geschützt. Die äußere Ebene ist User-Code. Ein Zugriffsversuch einer User-Page auf eine Supervisor-Page löst eine Exception aus. Was unterscheidet kooperatives und preemtives Multitasking? Beim kooperativen Multitasking entscheiden die Tasks selbst über die Umschaltung der Prozessorleistung. (Naives und Gutgläubiges Verfahren, daß an die Vernunft aller Tasks und somit aller Programmierer glaubt : ) Preemptives Multitasking ist echtes Multitasking. Ein externer Timer steuert die Umschaltung der Tasks. Die Tasks können somit keinen Einfluss auf die Betriebsmittelumschaltung nehmen. Kapitel 4 - Speicherhierarchie und Caches Was bedeutet die Eigenschaft Lokalität? Aus programmtechnischer Sicht wiederholen sich oft Befehle und ganze Programmteile. Somit werden Daten







Flashcard 7655171951884

Question
Wer wird Im Protected Mode strikt getrennt?
Answer
Anwendungen und Betriebssystem

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden de

Original toplevel document

Grundprinzipien der Rechnerarchitektur
s den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) <span>Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Speicherschutzsystem notwendig. Segmente zum schützen von Speicherbereichen Segmente sind logische Speicherbereiche variabler Länge (Pages sind normalerweise gleich groß und ergeben zusammengesetzt ein Segment). In einem Segment ist wiederum eine Aufteilung in Code-, Daten- und Speichersegment zu finden. Jedes Segment definiert ein Objekt, welches eindeutig über einen Deskriptor mit Basisadresse, Zugriffsrechten und Limit beschieben wird. Auf Basis dieser Segmente arbeitet die komplette Speicherverwaltung eines Rechners. Wie wird auf Segmente zugegriffen? Segmente werden über eine Deskriptortabelle indiziert. Die Tabellen enthalten Pointer auf die Speicherbereiche der jeweiligen Segmente. Was ist das besondere am segmentierten Adreßraum? Adressen auf Basis von Segmenten sind im unterschied zu linearen Adressen zweidimensional. Sie bestehen aus Segment und Offset. Berechnet werden sie durch einfache Addition von Segment und Offset. Vor der Addition ist das Segment um 4 Stellen nach links zu verschieben. 0002 : 000F berechnet sich also aus 0020 + 000F = 0001F Was sind die Nachteile des Realmodes? Begrenzung eines Segments auf maximal 64 KB, da Offsetadresse nur 16 Bit groß ist Es nur das erste MByte durch das Betriebssystem adressierbar kein Schutz des Speichers vor anderen Programmen Einträge aus der Interruptvektor-Tabelle sind leicht veränderbar nur ein Programm kann ausgeführt werden Was hat Multitasking mit Protected Mode zu tun? Multitasking kann nur durch Protected Mode arbeiten. Er ist sozusagen Grundlage für alle multitaskingfähigen Betriebssysteme. nsbesondere geht es um gegenseitigen Schutz der laufenden Tasks Taskwechselunterstützung durch das Betriebssystem Privilegierungsmechanismen Betriebssystemfunktionen zur Verwaltung von virtuellen Speicher Getrennte Stacks für Parameterübergabe Lösung des "Trojanischen Pferd" Problems Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes. Aus welchen beiden Teilen besteht eine Virtuelle Adresse? Eine virtuelle Adresse beinhaltet den Segmentselektor, welcher auf einen Eintrag in der Deskriptortabelle zeigt. Das Segment-Offset zeigt auf die dazugehörige Adresse in dem selektierten Segment. Aus welchen drei Teilen setzt sich ein Segmentselektor zusammen? Aus dem Index, der den Eintrag in der Deskriptortabelle referenziert, dem Table Indicator, welcher über globalem oder lokalem Adressraum entscheidet und den Privelege Level. TI - Table Indicator 0 = GDT (Global Deskriptor Table für den globalen Adreßraum) 1 = LDT (Local Deskriptor Table für den lokalen Adreßraum) RPL Requestor's Privilege Level Privilegstufe des Segments, auf welches der Selektor verweist Was ist ein Deskriptor? Deskriptoren sind Abbildungen zwischen der virtuellen bzw. logischen Adresse (Segmentselektor:Offset) und der linearen Adresse (Basisadresse und Offset). Aus der linearen Adresse wird dann die physikalische Adresse berechnet. (bei i286 war die lineare Adresse noch gleich der physikalischen Adresse, da es noch keine Paging-Einheit gab) Was steht alles in so einem Eintrag in der Deskriptortabelle? Die "normalen" Deskriptoren, welche einen normalen Adressraum (Daten-, Code- oder Stacksegment) beschreiben, enthalten die Basisadresse des Segmentes im Speicher die Zugriffsrechte die Länge des Segmentes Eine andere Klasse von Deskriptoren sind System-Segment-Deskriptoren und zur Ablaufsteuerung notwendige Deskriptoren. Erstere definieren Einsprungpunkte in spezielle System-Unterroutinen oder Gates. Letztere sind Deskriptoren für Task-State-Segmente oder Local-Deskriptor-Tables. Aktiv sind aber immer nur eine globale, eine lokale Interrupt-Beschreibertabelle und eine Interrupt-Beschreibertabelle. Was ist ein Gate? Gates sind spezielle Eintritts-Deskriptoren in Segmente höherer Privilegstufe. (Interrupt- oder Trap-Gate-Deskriptoren) Worin unterscheiden sich GDT und LDT? Die Global Descriptor Table einhält Segmente des globalen Adressraums, welcher für alle Tasks zur Verfügung steht. Dagegen sind mit Local Descriptor Table allokierte Segmente nur von den Host-Tasks selbst adressierbar. (privater Adressraum) Lokale Deskriptortabellen sind Grundlage für die Task-Isolation und daher extrem wichtig für Sicherheit und Segmentschutz. Beschreiben Sie den Aufbau einer Globalen Deskriptortabelle ... ... Globale C/D2 Globale Code-/Daten-Deskriptoren Globale C/D1 Globale Code-/Daten-Deskriptoren ... ... System D2 Gates bzw. TSS-Deskriptoren System D1 Gates bzw. TSS-Deskriptoren ... ... ... ... LDT 2 Lokale Deskriptoren für individuellen Task LDT 1 Lokale Deskriptoren für individuellen Task ... ... ... ... IDT 2 Interrupt/Exeption Gates bzw. Deskriptoren IDT 1 Interrupt/Exeption Gates bzw. Deskriptoren GTD_alias ermöglicht dynamischen Zugriff auf die GDT 0-Selektor Zugriff auf 0-Selektor führt zu Exeption Was unterscheidet Real-Mode und Protected-Mode? Im Real-Mode gibt es keine Deskriptoren und somit ist auch kein Segmentschutz möglich. Die Basisadresse berechnet sich einfach aus dem Segment-Register, welches maximal 1 MByte adressieren kann, da es nur 20 Bit breit ist. Im Protected-Mode werden die Basisadressen mittels Deskriptoren bestimmt. Auf Grund dieser Unterschiede sind folgende Merkmale für den Protected-Mode signifikant: Virtuelle Speicherverwaltung Speicherschutzmechanismen durch Segmentation (über Deskriptoren) Paging möglich echtes Multitasking möglich I/O-Privilegierung und privilegierte Befehle Was ist Paging und wie funktioniert es? Paging wird ab i386 vom Prozessor unterstützt und ist nichts weiter als eine Einteilung des Speichers in gleich große Seiten. Vorteil des virtuellen Speichers, welcher durch Mapping oder Paging erst möglich ist, sind für Anwendungen theoretisch unendlich großen Arbeitsspeicher. Grund dafür ist, dass der Tertiärspeicher als Zwischenspeicher für schlafende oder temporär nicht notwendige Seiten ausgenutzt wird. Es gibt ausgeklügelte Seitenerstetzungsalgorithmen, welche das Austauschen von Seiten übernehmen. Ein weiteres Problem was beim Paging gelöst werden muss, ist die eventuell entstehende Inkonsistenz. D ieses Problem wird wie bekanntermaßen üblich durch Dirty-Bits in den Pages gelöst. Verwirrend ist anfangs der Zusammenhang von Segmentierung und Paging. Letztendlich laufen beide Technologien gleichzeitig auf einem modernen System und ergänzen sich gegenseitig. Paging ist hinter den Segmentierungsvorgang geschalten, um Transparenz zu gewährleisten. Die durch die Segmentierung berechnete bzw. übergebene lineare Adresse entspricht ohne Paging der physikalischen. Falls Paging aktiv ist, muss noch etwas mehr getan werden. Die Umsetzung von Linearer in Physikalischer Adresse hängt vom verwendeten Paging ab. Normalerweise wird über die ersten Bits die Page-Table referenziert und über die folgenden der Pagetable-Eintrag, aus dem die Basisadresse geholt wird. Der Offset wird normalerweise beibehalten. Beschreiben Sie was bei einem Page-Fault intern alles abläuft? Während Abarbeitung einer Befehlssequenz erfolgen mehrere Seitenzugriffe Es erfolgt ein Zugriff auf eine Seite. Prozessor prüft die Seite (ist sie im Speicher?). Seite gibt Page Not Present State zurück (d.h. Seite nicht im Speicher) CPU löst Page Fault Exception aus (Siehe System-Aufruf-Deskriptoren) Betriebssystem gibt in Auftrag die Seite von Platte zu holen Prozessor aktiviert Festplattenhardware und positioniert Leseköpfe Seite wird über DMA-Transfer von Disk-To-free Memory übertragen Betriebssystem aktualisiert Pagetable einschließlich des TLB (flush TLB) Betriebssystem startet den unterbrochenen Befehl neu Nennen Sie Vorteile und Nachteile des Pagings gegenüber Segmentation-Only! Performanceerhöhung eines Multitasking-Betriebssystems Verwaltung der Swap-Datei wird durch die Verwendung konstanter Speicherblöcke einfacher nur die 4-KByte werden eingelagert, die tatsächlich benötigt werden und nicht das gesamte Segment Nachteile: Ausführung verzögert sich, weil die Adresse erst dekodiert werden muß bei Zugriff auf eine Seite/Page evtl. erst Einlagerung dieser vom Sekundärspeicher notwendig (Present-Bit) Wie kann man die Adressdekodierung beim Paging umgehen? Durch Translation Lookaside Buffer. Ein TLB ist ein assoziativer Vierwege-Cache, welcher die 32 Page-Table-Einträge aufnimmt, auf die der Prozessor zuletzt zugegriffen hat (LRU-Strategie). Ein TLB Eintrag besteht aus drei logischen Blöcken: Datenblock mit Page-Attributen und physikalische Basisadresse einer Page Tagblock enthält die oberen 17 Bit einer linearen Adresse und Schutz-Bits LRU-Block (Least Recently Used) zeigt letzten Zugriff an Page- und Segmentschutz Zuerst wirkt der Segmentschutz und danach Pageschutz. Pageschutz ist nur 2-stufig. Die inneren drei Privilegebenen sind beim Paging als Supervisor-Code geschützt. Die äußere Ebene ist User-Code. Ein Zugriffsversuch einer User-Page auf eine Supervisor-Page löst eine Exception aus. Was unterscheidet kooperatives und preemtives Multitasking? Beim kooperativen Multitasking entscheiden die Tasks selbst über die Umschaltung der Prozessorleistung. (Naives und Gutgläubiges Verfahren, daß an die Vernunft aller Tasks und somit aller Programmierer glaubt : ) Preemptives Multitasking ist echtes Multitasking. Ein externer Timer steuert die Umschaltung der Tasks. Die Tasks können somit keinen Einfluss auf die Betriebsmittelumschaltung nehmen. Kapitel 4 - Speicherhierarchie und Caches Was bedeutet die Eigenschaft Lokalität? Aus programmtechnischer Sicht wiederholen sich oft Befehle und ganze Programmteile. Somit werden Daten







Flashcard 7655173524748

Question
Was macht der Protected Mode mit Anwendungen und dem Betriebssystem?
Answer
strikt trennen

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskr

Original toplevel document

Grundprinzipien der Rechnerarchitektur
s den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) <span>Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Speicherschutzsystem notwendig. Segmente zum schützen von Speicherbereichen Segmente sind logische Speicherbereiche variabler Länge (Pages sind normalerweise gleich groß und ergeben zusammengesetzt ein Segment). In einem Segment ist wiederum eine Aufteilung in Code-, Daten- und Speichersegment zu finden. Jedes Segment definiert ein Objekt, welches eindeutig über einen Deskriptor mit Basisadresse, Zugriffsrechten und Limit beschieben wird. Auf Basis dieser Segmente arbeitet die komplette Speicherverwaltung eines Rechners. Wie wird auf Segmente zugegriffen? Segmente werden über eine Deskriptortabelle indiziert. Die Tabellen enthalten Pointer auf die Speicherbereiche der jeweiligen Segmente. Was ist das besondere am segmentierten Adreßraum? Adressen auf Basis von Segmenten sind im unterschied zu linearen Adressen zweidimensional. Sie bestehen aus Segment und Offset. Berechnet werden sie durch einfache Addition von Segment und Offset. Vor der Addition ist das Segment um 4 Stellen nach links zu verschieben. 0002 : 000F berechnet sich also aus 0020 + 000F = 0001F Was sind die Nachteile des Realmodes? Begrenzung eines Segments auf maximal 64 KB, da Offsetadresse nur 16 Bit groß ist Es nur das erste MByte durch das Betriebssystem adressierbar kein Schutz des Speichers vor anderen Programmen Einträge aus der Interruptvektor-Tabelle sind leicht veränderbar nur ein Programm kann ausgeführt werden Was hat Multitasking mit Protected Mode zu tun? Multitasking kann nur durch Protected Mode arbeiten. Er ist sozusagen Grundlage für alle multitaskingfähigen Betriebssysteme. nsbesondere geht es um gegenseitigen Schutz der laufenden Tasks Taskwechselunterstützung durch das Betriebssystem Privilegierungsmechanismen Betriebssystemfunktionen zur Verwaltung von virtuellen Speicher Getrennte Stacks für Parameterübergabe Lösung des "Trojanischen Pferd" Problems Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes. Aus welchen beiden Teilen besteht eine Virtuelle Adresse? Eine virtuelle Adresse beinhaltet den Segmentselektor, welcher auf einen Eintrag in der Deskriptortabelle zeigt. Das Segment-Offset zeigt auf die dazugehörige Adresse in dem selektierten Segment. Aus welchen drei Teilen setzt sich ein Segmentselektor zusammen? Aus dem Index, der den Eintrag in der Deskriptortabelle referenziert, dem Table Indicator, welcher über globalem oder lokalem Adressraum entscheidet und den Privelege Level. TI - Table Indicator 0 = GDT (Global Deskriptor Table für den globalen Adreßraum) 1 = LDT (Local Deskriptor Table für den lokalen Adreßraum) RPL Requestor's Privilege Level Privilegstufe des Segments, auf welches der Selektor verweist Was ist ein Deskriptor? Deskriptoren sind Abbildungen zwischen der virtuellen bzw. logischen Adresse (Segmentselektor:Offset) und der linearen Adresse (Basisadresse und Offset). Aus der linearen Adresse wird dann die physikalische Adresse berechnet. (bei i286 war die lineare Adresse noch gleich der physikalischen Adresse, da es noch keine Paging-Einheit gab) Was steht alles in so einem Eintrag in der Deskriptortabelle? Die "normalen" Deskriptoren, welche einen normalen Adressraum (Daten-, Code- oder Stacksegment) beschreiben, enthalten die Basisadresse des Segmentes im Speicher die Zugriffsrechte die Länge des Segmentes Eine andere Klasse von Deskriptoren sind System-Segment-Deskriptoren und zur Ablaufsteuerung notwendige Deskriptoren. Erstere definieren Einsprungpunkte in spezielle System-Unterroutinen oder Gates. Letztere sind Deskriptoren für Task-State-Segmente oder Local-Deskriptor-Tables. Aktiv sind aber immer nur eine globale, eine lokale Interrupt-Beschreibertabelle und eine Interrupt-Beschreibertabelle. Was ist ein Gate? Gates sind spezielle Eintritts-Deskriptoren in Segmente höherer Privilegstufe. (Interrupt- oder Trap-Gate-Deskriptoren) Worin unterscheiden sich GDT und LDT? Die Global Descriptor Table einhält Segmente des globalen Adressraums, welcher für alle Tasks zur Verfügung steht. Dagegen sind mit Local Descriptor Table allokierte Segmente nur von den Host-Tasks selbst adressierbar. (privater Adressraum) Lokale Deskriptortabellen sind Grundlage für die Task-Isolation und daher extrem wichtig für Sicherheit und Segmentschutz. Beschreiben Sie den Aufbau einer Globalen Deskriptortabelle ... ... Globale C/D2 Globale Code-/Daten-Deskriptoren Globale C/D1 Globale Code-/Daten-Deskriptoren ... ... System D2 Gates bzw. TSS-Deskriptoren System D1 Gates bzw. TSS-Deskriptoren ... ... ... ... LDT 2 Lokale Deskriptoren für individuellen Task LDT 1 Lokale Deskriptoren für individuellen Task ... ... ... ... IDT 2 Interrupt/Exeption Gates bzw. Deskriptoren IDT 1 Interrupt/Exeption Gates bzw. Deskriptoren GTD_alias ermöglicht dynamischen Zugriff auf die GDT 0-Selektor Zugriff auf 0-Selektor führt zu Exeption Was unterscheidet Real-Mode und Protected-Mode? Im Real-Mode gibt es keine Deskriptoren und somit ist auch kein Segmentschutz möglich. Die Basisadresse berechnet sich einfach aus dem Segment-Register, welches maximal 1 MByte adressieren kann, da es nur 20 Bit breit ist. Im Protected-Mode werden die Basisadressen mittels Deskriptoren bestimmt. Auf Grund dieser Unterschiede sind folgende Merkmale für den Protected-Mode signifikant: Virtuelle Speicherverwaltung Speicherschutzmechanismen durch Segmentation (über Deskriptoren) Paging möglich echtes Multitasking möglich I/O-Privilegierung und privilegierte Befehle Was ist Paging und wie funktioniert es? Paging wird ab i386 vom Prozessor unterstützt und ist nichts weiter als eine Einteilung des Speichers in gleich große Seiten. Vorteil des virtuellen Speichers, welcher durch Mapping oder Paging erst möglich ist, sind für Anwendungen theoretisch unendlich großen Arbeitsspeicher. Grund dafür ist, dass der Tertiärspeicher als Zwischenspeicher für schlafende oder temporär nicht notwendige Seiten ausgenutzt wird. Es gibt ausgeklügelte Seitenerstetzungsalgorithmen, welche das Austauschen von Seiten übernehmen. Ein weiteres Problem was beim Paging gelöst werden muss, ist die eventuell entstehende Inkonsistenz. D ieses Problem wird wie bekanntermaßen üblich durch Dirty-Bits in den Pages gelöst. Verwirrend ist anfangs der Zusammenhang von Segmentierung und Paging. Letztendlich laufen beide Technologien gleichzeitig auf einem modernen System und ergänzen sich gegenseitig. Paging ist hinter den Segmentierungsvorgang geschalten, um Transparenz zu gewährleisten. Die durch die Segmentierung berechnete bzw. übergebene lineare Adresse entspricht ohne Paging der physikalischen. Falls Paging aktiv ist, muss noch etwas mehr getan werden. Die Umsetzung von Linearer in Physikalischer Adresse hängt vom verwendeten Paging ab. Normalerweise wird über die ersten Bits die Page-Table referenziert und über die folgenden der Pagetable-Eintrag, aus dem die Basisadresse geholt wird. Der Offset wird normalerweise beibehalten. Beschreiben Sie was bei einem Page-Fault intern alles abläuft? Während Abarbeitung einer Befehlssequenz erfolgen mehrere Seitenzugriffe Es erfolgt ein Zugriff auf eine Seite. Prozessor prüft die Seite (ist sie im Speicher?). Seite gibt Page Not Present State zurück (d.h. Seite nicht im Speicher) CPU löst Page Fault Exception aus (Siehe System-Aufruf-Deskriptoren) Betriebssystem gibt in Auftrag die Seite von Platte zu holen Prozessor aktiviert Festplattenhardware und positioniert Leseköpfe Seite wird über DMA-Transfer von Disk-To-free Memory übertragen Betriebssystem aktualisiert Pagetable einschließlich des TLB (flush TLB) Betriebssystem startet den unterbrochenen Befehl neu Nennen Sie Vorteile und Nachteile des Pagings gegenüber Segmentation-Only! Performanceerhöhung eines Multitasking-Betriebssystems Verwaltung der Swap-Datei wird durch die Verwendung konstanter Speicherblöcke einfacher nur die 4-KByte werden eingelagert, die tatsächlich benötigt werden und nicht das gesamte Segment Nachteile: Ausführung verzögert sich, weil die Adresse erst dekodiert werden muß bei Zugriff auf eine Seite/Page evtl. erst Einlagerung dieser vom Sekundärspeicher notwendig (Present-Bit) Wie kann man die Adressdekodierung beim Paging umgehen? Durch Translation Lookaside Buffer. Ein TLB ist ein assoziativer Vierwege-Cache, welcher die 32 Page-Table-Einträge aufnimmt, auf die der Prozessor zuletzt zugegriffen hat (LRU-Strategie). Ein TLB Eintrag besteht aus drei logischen Blöcken: Datenblock mit Page-Attributen und physikalische Basisadresse einer Page Tagblock enthält die oberen 17 Bit einer linearen Adresse und Schutz-Bits LRU-Block (Least Recently Used) zeigt letzten Zugriff an Page- und Segmentschutz Zuerst wirkt der Segmentschutz und danach Pageschutz. Pageschutz ist nur 2-stufig. Die inneren drei Privilegebenen sind beim Paging als Supervisor-Code geschützt. Die äußere Ebene ist User-Code. Ein Zugriffsversuch einer User-Page auf eine Supervisor-Page löst eine Exception aus. Was unterscheidet kooperatives und preemtives Multitasking? Beim kooperativen Multitasking entscheiden die Tasks selbst über die Umschaltung der Prozessorleistung. (Naives und Gutgläubiges Verfahren, daß an die Vernunft aller Tasks und somit aller Programmierer glaubt : ) Preemptives Multitasking ist echtes Multitasking. Ein externer Timer steuert die Umschaltung der Tasks. Die Tasks können somit keinen Einfluss auf die Betriebsmittelumschaltung nehmen. Kapitel 4 - Speicherhierarchie und Caches Was bedeutet die Eigenschaft Lokalität? Aus programmtechnischer Sicht wiederholen sich oft Befehle und ganze Programmteile. Somit werden Daten







Flashcard 7655175097612

Question
Welche Privilegstufen gibt es?
Answer
null bis drei

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes

Original toplevel document

Grundprinzipien der Rechnerarchitektur
s den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) <span>Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Speicherschutzsystem notwendig. Segmente zum schützen von Speicherbereichen Segmente sind logische Speicherbereiche variabler Länge (Pages sind normalerweise gleich groß und ergeben zusammengesetzt ein Segment). In einem Segment ist wiederum eine Aufteilung in Code-, Daten- und Speichersegment zu finden. Jedes Segment definiert ein Objekt, welches eindeutig über einen Deskriptor mit Basisadresse, Zugriffsrechten und Limit beschieben wird. Auf Basis dieser Segmente arbeitet die komplette Speicherverwaltung eines Rechners. Wie wird auf Segmente zugegriffen? Segmente werden über eine Deskriptortabelle indiziert. Die Tabellen enthalten Pointer auf die Speicherbereiche der jeweiligen Segmente. Was ist das besondere am segmentierten Adreßraum? Adressen auf Basis von Segmenten sind im unterschied zu linearen Adressen zweidimensional. Sie bestehen aus Segment und Offset. Berechnet werden sie durch einfache Addition von Segment und Offset. Vor der Addition ist das Segment um 4 Stellen nach links zu verschieben. 0002 : 000F berechnet sich also aus 0020 + 000F = 0001F Was sind die Nachteile des Realmodes? Begrenzung eines Segments auf maximal 64 KB, da Offsetadresse nur 16 Bit groß ist Es nur das erste MByte durch das Betriebssystem adressierbar kein Schutz des Speichers vor anderen Programmen Einträge aus der Interruptvektor-Tabelle sind leicht veränderbar nur ein Programm kann ausgeführt werden Was hat Multitasking mit Protected Mode zu tun? Multitasking kann nur durch Protected Mode arbeiten. Er ist sozusagen Grundlage für alle multitaskingfähigen Betriebssysteme. nsbesondere geht es um gegenseitigen Schutz der laufenden Tasks Taskwechselunterstützung durch das Betriebssystem Privilegierungsmechanismen Betriebssystemfunktionen zur Verwaltung von virtuellen Speicher Getrennte Stacks für Parameterübergabe Lösung des "Trojanischen Pferd" Problems Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes. Aus welchen beiden Teilen besteht eine Virtuelle Adresse? Eine virtuelle Adresse beinhaltet den Segmentselektor, welcher auf einen Eintrag in der Deskriptortabelle zeigt. Das Segment-Offset zeigt auf die dazugehörige Adresse in dem selektierten Segment. Aus welchen drei Teilen setzt sich ein Segmentselektor zusammen? Aus dem Index, der den Eintrag in der Deskriptortabelle referenziert, dem Table Indicator, welcher über globalem oder lokalem Adressraum entscheidet und den Privelege Level. TI - Table Indicator 0 = GDT (Global Deskriptor Table für den globalen Adreßraum) 1 = LDT (Local Deskriptor Table für den lokalen Adreßraum) RPL Requestor's Privilege Level Privilegstufe des Segments, auf welches der Selektor verweist Was ist ein Deskriptor? Deskriptoren sind Abbildungen zwischen der virtuellen bzw. logischen Adresse (Segmentselektor:Offset) und der linearen Adresse (Basisadresse und Offset). Aus der linearen Adresse wird dann die physikalische Adresse berechnet. (bei i286 war die lineare Adresse noch gleich der physikalischen Adresse, da es noch keine Paging-Einheit gab) Was steht alles in so einem Eintrag in der Deskriptortabelle? Die "normalen" Deskriptoren, welche einen normalen Adressraum (Daten-, Code- oder Stacksegment) beschreiben, enthalten die Basisadresse des Segmentes im Speicher die Zugriffsrechte die Länge des Segmentes Eine andere Klasse von Deskriptoren sind System-Segment-Deskriptoren und zur Ablaufsteuerung notwendige Deskriptoren. Erstere definieren Einsprungpunkte in spezielle System-Unterroutinen oder Gates. Letztere sind Deskriptoren für Task-State-Segmente oder Local-Deskriptor-Tables. Aktiv sind aber immer nur eine globale, eine lokale Interrupt-Beschreibertabelle und eine Interrupt-Beschreibertabelle. Was ist ein Gate? Gates sind spezielle Eintritts-Deskriptoren in Segmente höherer Privilegstufe. (Interrupt- oder Trap-Gate-Deskriptoren) Worin unterscheiden sich GDT und LDT? Die Global Descriptor Table einhält Segmente des globalen Adressraums, welcher für alle Tasks zur Verfügung steht. Dagegen sind mit Local Descriptor Table allokierte Segmente nur von den Host-Tasks selbst adressierbar. (privater Adressraum) Lokale Deskriptortabellen sind Grundlage für die Task-Isolation und daher extrem wichtig für Sicherheit und Segmentschutz. Beschreiben Sie den Aufbau einer Globalen Deskriptortabelle ... ... Globale C/D2 Globale Code-/Daten-Deskriptoren Globale C/D1 Globale Code-/Daten-Deskriptoren ... ... System D2 Gates bzw. TSS-Deskriptoren System D1 Gates bzw. TSS-Deskriptoren ... ... ... ... LDT 2 Lokale Deskriptoren für individuellen Task LDT 1 Lokale Deskriptoren für individuellen Task ... ... ... ... IDT 2 Interrupt/Exeption Gates bzw. Deskriptoren IDT 1 Interrupt/Exeption Gates bzw. Deskriptoren GTD_alias ermöglicht dynamischen Zugriff auf die GDT 0-Selektor Zugriff auf 0-Selektor führt zu Exeption Was unterscheidet Real-Mode und Protected-Mode? Im Real-Mode gibt es keine Deskriptoren und somit ist auch kein Segmentschutz möglich. Die Basisadresse berechnet sich einfach aus dem Segment-Register, welches maximal 1 MByte adressieren kann, da es nur 20 Bit breit ist. Im Protected-Mode werden die Basisadressen mittels Deskriptoren bestimmt. Auf Grund dieser Unterschiede sind folgende Merkmale für den Protected-Mode signifikant: Virtuelle Speicherverwaltung Speicherschutzmechanismen durch Segmentation (über Deskriptoren) Paging möglich echtes Multitasking möglich I/O-Privilegierung und privilegierte Befehle Was ist Paging und wie funktioniert es? Paging wird ab i386 vom Prozessor unterstützt und ist nichts weiter als eine Einteilung des Speichers in gleich große Seiten. Vorteil des virtuellen Speichers, welcher durch Mapping oder Paging erst möglich ist, sind für Anwendungen theoretisch unendlich großen Arbeitsspeicher. Grund dafür ist, dass der Tertiärspeicher als Zwischenspeicher für schlafende oder temporär nicht notwendige Seiten ausgenutzt wird. Es gibt ausgeklügelte Seitenerstetzungsalgorithmen, welche das Austauschen von Seiten übernehmen. Ein weiteres Problem was beim Paging gelöst werden muss, ist die eventuell entstehende Inkonsistenz. D ieses Problem wird wie bekanntermaßen üblich durch Dirty-Bits in den Pages gelöst. Verwirrend ist anfangs der Zusammenhang von Segmentierung und Paging. Letztendlich laufen beide Technologien gleichzeitig auf einem modernen System und ergänzen sich gegenseitig. Paging ist hinter den Segmentierungsvorgang geschalten, um Transparenz zu gewährleisten. Die durch die Segmentierung berechnete bzw. übergebene lineare Adresse entspricht ohne Paging der physikalischen. Falls Paging aktiv ist, muss noch etwas mehr getan werden. Die Umsetzung von Linearer in Physikalischer Adresse hängt vom verwendeten Paging ab. Normalerweise wird über die ersten Bits die Page-Table referenziert und über die folgenden der Pagetable-Eintrag, aus dem die Basisadresse geholt wird. Der Offset wird normalerweise beibehalten. Beschreiben Sie was bei einem Page-Fault intern alles abläuft? Während Abarbeitung einer Befehlssequenz erfolgen mehrere Seitenzugriffe Es erfolgt ein Zugriff auf eine Seite. Prozessor prüft die Seite (ist sie im Speicher?). Seite gibt Page Not Present State zurück (d.h. Seite nicht im Speicher) CPU löst Page Fault Exception aus (Siehe System-Aufruf-Deskriptoren) Betriebssystem gibt in Auftrag die Seite von Platte zu holen Prozessor aktiviert Festplattenhardware und positioniert Leseköpfe Seite wird über DMA-Transfer von Disk-To-free Memory übertragen Betriebssystem aktualisiert Pagetable einschließlich des TLB (flush TLB) Betriebssystem startet den unterbrochenen Befehl neu Nennen Sie Vorteile und Nachteile des Pagings gegenüber Segmentation-Only! Performanceerhöhung eines Multitasking-Betriebssystems Verwaltung der Swap-Datei wird durch die Verwendung konstanter Speicherblöcke einfacher nur die 4-KByte werden eingelagert, die tatsächlich benötigt werden und nicht das gesamte Segment Nachteile: Ausführung verzögert sich, weil die Adresse erst dekodiert werden muß bei Zugriff auf eine Seite/Page evtl. erst Einlagerung dieser vom Sekundärspeicher notwendig (Present-Bit) Wie kann man die Adressdekodierung beim Paging umgehen? Durch Translation Lookaside Buffer. Ein TLB ist ein assoziativer Vierwege-Cache, welcher die 32 Page-Table-Einträge aufnimmt, auf die der Prozessor zuletzt zugegriffen hat (LRU-Strategie). Ein TLB Eintrag besteht aus drei logischen Blöcken: Datenblock mit Page-Attributen und physikalische Basisadresse einer Page Tagblock enthält die oberen 17 Bit einer linearen Adresse und Schutz-Bits LRU-Block (Least Recently Used) zeigt letzten Zugriff an Page- und Segmentschutz Zuerst wirkt der Segmentschutz und danach Pageschutz. Pageschutz ist nur 2-stufig. Die inneren drei Privilegebenen sind beim Paging als Supervisor-Code geschützt. Die äußere Ebene ist User-Code. Ein Zugriffsversuch einer User-Page auf eine Supervisor-Page löst eine Exception aus. Was unterscheidet kooperatives und preemtives Multitasking? Beim kooperativen Multitasking entscheiden die Tasks selbst über die Umschaltung der Prozessorleistung. (Naives und Gutgläubiges Verfahren, daß an die Vernunft aller Tasks und somit aller Programmierer glaubt : ) Preemptives Multitasking ist echtes Multitasking. Ein externer Timer steuert die Umschaltung der Tasks. Die Tasks können somit keinen Einfluss auf die Betriebsmittelumschaltung nehmen. Kapitel 4 - Speicherhierarchie und Caches Was bedeutet die Eigenschaft Lokalität? Aus programmtechnischer Sicht wiederholen sich oft Befehle und ganze Programmteile. Somit werden Daten







Flashcard 7655176670476

Question
Worüber entscheiden die Privilegstufen?
Answer
Ausführung verschiedener Maschinensprachebefehle

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes.

Original toplevel document

Grundprinzipien der Rechnerarchitektur
s den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) <span>Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Speicherschutzsystem notwendig. Segmente zum schützen von Speicherbereichen Segmente sind logische Speicherbereiche variabler Länge (Pages sind normalerweise gleich groß und ergeben zusammengesetzt ein Segment). In einem Segment ist wiederum eine Aufteilung in Code-, Daten- und Speichersegment zu finden. Jedes Segment definiert ein Objekt, welches eindeutig über einen Deskriptor mit Basisadresse, Zugriffsrechten und Limit beschieben wird. Auf Basis dieser Segmente arbeitet die komplette Speicherverwaltung eines Rechners. Wie wird auf Segmente zugegriffen? Segmente werden über eine Deskriptortabelle indiziert. Die Tabellen enthalten Pointer auf die Speicherbereiche der jeweiligen Segmente. Was ist das besondere am segmentierten Adreßraum? Adressen auf Basis von Segmenten sind im unterschied zu linearen Adressen zweidimensional. Sie bestehen aus Segment und Offset. Berechnet werden sie durch einfache Addition von Segment und Offset. Vor der Addition ist das Segment um 4 Stellen nach links zu verschieben. 0002 : 000F berechnet sich also aus 0020 + 000F = 0001F Was sind die Nachteile des Realmodes? Begrenzung eines Segments auf maximal 64 KB, da Offsetadresse nur 16 Bit groß ist Es nur das erste MByte durch das Betriebssystem adressierbar kein Schutz des Speichers vor anderen Programmen Einträge aus der Interruptvektor-Tabelle sind leicht veränderbar nur ein Programm kann ausgeführt werden Was hat Multitasking mit Protected Mode zu tun? Multitasking kann nur durch Protected Mode arbeiten. Er ist sozusagen Grundlage für alle multitaskingfähigen Betriebssysteme. nsbesondere geht es um gegenseitigen Schutz der laufenden Tasks Taskwechselunterstützung durch das Betriebssystem Privilegierungsmechanismen Betriebssystemfunktionen zur Verwaltung von virtuellen Speicher Getrennte Stacks für Parameterübergabe Lösung des "Trojanischen Pferd" Problems Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes. Aus welchen beiden Teilen besteht eine Virtuelle Adresse? Eine virtuelle Adresse beinhaltet den Segmentselektor, welcher auf einen Eintrag in der Deskriptortabelle zeigt. Das Segment-Offset zeigt auf die dazugehörige Adresse in dem selektierten Segment. Aus welchen drei Teilen setzt sich ein Segmentselektor zusammen? Aus dem Index, der den Eintrag in der Deskriptortabelle referenziert, dem Table Indicator, welcher über globalem oder lokalem Adressraum entscheidet und den Privelege Level. TI - Table Indicator 0 = GDT (Global Deskriptor Table für den globalen Adreßraum) 1 = LDT (Local Deskriptor Table für den lokalen Adreßraum) RPL Requestor's Privilege Level Privilegstufe des Segments, auf welches der Selektor verweist Was ist ein Deskriptor? Deskriptoren sind Abbildungen zwischen der virtuellen bzw. logischen Adresse (Segmentselektor:Offset) und der linearen Adresse (Basisadresse und Offset). Aus der linearen Adresse wird dann die physikalische Adresse berechnet. (bei i286 war die lineare Adresse noch gleich der physikalischen Adresse, da es noch keine Paging-Einheit gab) Was steht alles in so einem Eintrag in der Deskriptortabelle? Die "normalen" Deskriptoren, welche einen normalen Adressraum (Daten-, Code- oder Stacksegment) beschreiben, enthalten die Basisadresse des Segmentes im Speicher die Zugriffsrechte die Länge des Segmentes Eine andere Klasse von Deskriptoren sind System-Segment-Deskriptoren und zur Ablaufsteuerung notwendige Deskriptoren. Erstere definieren Einsprungpunkte in spezielle System-Unterroutinen oder Gates. Letztere sind Deskriptoren für Task-State-Segmente oder Local-Deskriptor-Tables. Aktiv sind aber immer nur eine globale, eine lokale Interrupt-Beschreibertabelle und eine Interrupt-Beschreibertabelle. Was ist ein Gate? Gates sind spezielle Eintritts-Deskriptoren in Segmente höherer Privilegstufe. (Interrupt- oder Trap-Gate-Deskriptoren) Worin unterscheiden sich GDT und LDT? Die Global Descriptor Table einhält Segmente des globalen Adressraums, welcher für alle Tasks zur Verfügung steht. Dagegen sind mit Local Descriptor Table allokierte Segmente nur von den Host-Tasks selbst adressierbar. (privater Adressraum) Lokale Deskriptortabellen sind Grundlage für die Task-Isolation und daher extrem wichtig für Sicherheit und Segmentschutz. Beschreiben Sie den Aufbau einer Globalen Deskriptortabelle ... ... Globale C/D2 Globale Code-/Daten-Deskriptoren Globale C/D1 Globale Code-/Daten-Deskriptoren ... ... System D2 Gates bzw. TSS-Deskriptoren System D1 Gates bzw. TSS-Deskriptoren ... ... ... ... LDT 2 Lokale Deskriptoren für individuellen Task LDT 1 Lokale Deskriptoren für individuellen Task ... ... ... ... IDT 2 Interrupt/Exeption Gates bzw. Deskriptoren IDT 1 Interrupt/Exeption Gates bzw. Deskriptoren GTD_alias ermöglicht dynamischen Zugriff auf die GDT 0-Selektor Zugriff auf 0-Selektor führt zu Exeption Was unterscheidet Real-Mode und Protected-Mode? Im Real-Mode gibt es keine Deskriptoren und somit ist auch kein Segmentschutz möglich. Die Basisadresse berechnet sich einfach aus dem Segment-Register, welches maximal 1 MByte adressieren kann, da es nur 20 Bit breit ist. Im Protected-Mode werden die Basisadressen mittels Deskriptoren bestimmt. Auf Grund dieser Unterschiede sind folgende Merkmale für den Protected-Mode signifikant: Virtuelle Speicherverwaltung Speicherschutzmechanismen durch Segmentation (über Deskriptoren) Paging möglich echtes Multitasking möglich I/O-Privilegierung und privilegierte Befehle Was ist Paging und wie funktioniert es? Paging wird ab i386 vom Prozessor unterstützt und ist nichts weiter als eine Einteilung des Speichers in gleich große Seiten. Vorteil des virtuellen Speichers, welcher durch Mapping oder Paging erst möglich ist, sind für Anwendungen theoretisch unendlich großen Arbeitsspeicher. Grund dafür ist, dass der Tertiärspeicher als Zwischenspeicher für schlafende oder temporär nicht notwendige Seiten ausgenutzt wird. Es gibt ausgeklügelte Seitenerstetzungsalgorithmen, welche das Austauschen von Seiten übernehmen. Ein weiteres Problem was beim Paging gelöst werden muss, ist die eventuell entstehende Inkonsistenz. D ieses Problem wird wie bekanntermaßen üblich durch Dirty-Bits in den Pages gelöst. Verwirrend ist anfangs der Zusammenhang von Segmentierung und Paging. Letztendlich laufen beide Technologien gleichzeitig auf einem modernen System und ergänzen sich gegenseitig. Paging ist hinter den Segmentierungsvorgang geschalten, um Transparenz zu gewährleisten. Die durch die Segmentierung berechnete bzw. übergebene lineare Adresse entspricht ohne Paging der physikalischen. Falls Paging aktiv ist, muss noch etwas mehr getan werden. Die Umsetzung von Linearer in Physikalischer Adresse hängt vom verwendeten Paging ab. Normalerweise wird über die ersten Bits die Page-Table referenziert und über die folgenden der Pagetable-Eintrag, aus dem die Basisadresse geholt wird. Der Offset wird normalerweise beibehalten. Beschreiben Sie was bei einem Page-Fault intern alles abläuft? Während Abarbeitung einer Befehlssequenz erfolgen mehrere Seitenzugriffe Es erfolgt ein Zugriff auf eine Seite. Prozessor prüft die Seite (ist sie im Speicher?). Seite gibt Page Not Present State zurück (d.h. Seite nicht im Speicher) CPU löst Page Fault Exception aus (Siehe System-Aufruf-Deskriptoren) Betriebssystem gibt in Auftrag die Seite von Platte zu holen Prozessor aktiviert Festplattenhardware und positioniert Leseköpfe Seite wird über DMA-Transfer von Disk-To-free Memory übertragen Betriebssystem aktualisiert Pagetable einschließlich des TLB (flush TLB) Betriebssystem startet den unterbrochenen Befehl neu Nennen Sie Vorteile und Nachteile des Pagings gegenüber Segmentation-Only! Performanceerhöhung eines Multitasking-Betriebssystems Verwaltung der Swap-Datei wird durch die Verwendung konstanter Speicherblöcke einfacher nur die 4-KByte werden eingelagert, die tatsächlich benötigt werden und nicht das gesamte Segment Nachteile: Ausführung verzögert sich, weil die Adresse erst dekodiert werden muß bei Zugriff auf eine Seite/Page evtl. erst Einlagerung dieser vom Sekundärspeicher notwendig (Present-Bit) Wie kann man die Adressdekodierung beim Paging umgehen? Durch Translation Lookaside Buffer. Ein TLB ist ein assoziativer Vierwege-Cache, welcher die 32 Page-Table-Einträge aufnimmt, auf die der Prozessor zuletzt zugegriffen hat (LRU-Strategie). Ein TLB Eintrag besteht aus drei logischen Blöcken: Datenblock mit Page-Attributen und physikalische Basisadresse einer Page Tagblock enthält die oberen 17 Bit einer linearen Adresse und Schutz-Bits LRU-Block (Least Recently Used) zeigt letzten Zugriff an Page- und Segmentschutz Zuerst wirkt der Segmentschutz und danach Pageschutz. Pageschutz ist nur 2-stufig. Die inneren drei Privilegebenen sind beim Paging als Supervisor-Code geschützt. Die äußere Ebene ist User-Code. Ein Zugriffsversuch einer User-Page auf eine Supervisor-Page löst eine Exception aus. Was unterscheidet kooperatives und preemtives Multitasking? Beim kooperativen Multitasking entscheiden die Tasks selbst über die Umschaltung der Prozessorleistung. (Naives und Gutgläubiges Verfahren, daß an die Vernunft aller Tasks und somit aller Programmierer glaubt : ) Preemptives Multitasking ist echtes Multitasking. Ein externer Timer steuert die Umschaltung der Tasks. Die Tasks können somit keinen Einfluss auf die Betriebsmittelumschaltung nehmen. Kapitel 4 - Speicherhierarchie und Caches Was bedeutet die Eigenschaft Lokalität? Aus programmtechnischer Sicht wiederholen sich oft Befehle und ganze Programmteile. Somit werden Daten







Flashcard 7655178243340

Question
Wer entscheidet über die Ausführung verschiedener Maschinensprachebefehle?
Answer
die Privilegstufen

statusnot learnedmeasured difficulty37% [default]last interval [days]               
repetition number in this series0memorised on               scheduled repetition               
scheduled repetition interval               last repetition or drill

Parent (intermediate) annotation

Open it
Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Masch

Original toplevel document

Grundprinzipien der Rechnerarchitektur
s den Index Stapeladressierung Hier ist gar keine Adressangabe notwendig Somit sind die Instruktionen sehr kurz Die Stapeladressierung arbeitet mit der umgekehrten polnischen Notation (Postfix) <span>Kapitel 3 - Speicherschutz und Multitasking Um unberechtigte Zugriffe, Datenaufrufe oder Systemprozedurecalls zu vermeiden und Task-Isolation zu gewährleisten, ist ein ausgeklügeltes Speicherschutzsystem notwendig. Segmente zum schützen von Speicherbereichen Segmente sind logische Speicherbereiche variabler Länge (Pages sind normalerweise gleich groß und ergeben zusammengesetzt ein Segment). In einem Segment ist wiederum eine Aufteilung in Code-, Daten- und Speichersegment zu finden. Jedes Segment definiert ein Objekt, welches eindeutig über einen Deskriptor mit Basisadresse, Zugriffsrechten und Limit beschieben wird. Auf Basis dieser Segmente arbeitet die komplette Speicherverwaltung eines Rechners. Wie wird auf Segmente zugegriffen? Segmente werden über eine Deskriptortabelle indiziert. Die Tabellen enthalten Pointer auf die Speicherbereiche der jeweiligen Segmente. Was ist das besondere am segmentierten Adreßraum? Adressen auf Basis von Segmenten sind im unterschied zu linearen Adressen zweidimensional. Sie bestehen aus Segment und Offset. Berechnet werden sie durch einfache Addition von Segment und Offset. Vor der Addition ist das Segment um 4 Stellen nach links zu verschieben. 0002 : 000F berechnet sich also aus 0020 + 000F = 0001F Was sind die Nachteile des Realmodes? Begrenzung eines Segments auf maximal 64 KB, da Offsetadresse nur 16 Bit groß ist Es nur das erste MByte durch das Betriebssystem adressierbar kein Schutz des Speichers vor anderen Programmen Einträge aus der Interruptvektor-Tabelle sind leicht veränderbar nur ein Programm kann ausgeführt werden Was hat Multitasking mit Protected Mode zu tun? Multitasking kann nur durch Protected Mode arbeiten. Er ist sozusagen Grundlage für alle multitaskingfähigen Betriebssysteme. nsbesondere geht es um gegenseitigen Schutz der laufenden Tasks Taskwechselunterstützung durch das Betriebssystem Privilegierungsmechanismen Betriebssystemfunktionen zur Verwaltung von virtuellen Speicher Getrennte Stacks für Parameterübergabe Lösung des "Trojanischen Pferd" Problems Privilegebenen Im Protected Mode werden Anwendungen und Betriebssystem strikt getrennt. Es gibt vier Privilegstufen (null bis drei), welche über die Ausführung verschiedener Maschinensprachebefehle entscheiden. Befehle der Ebene Null sind z.B. das Laden der globalen Deskriptorentabelle oder des Maschinenstatuswortes. Aus welchen beiden Teilen besteht eine Virtuelle Adresse? Eine virtuelle Adresse beinhaltet den Segmentselektor, welcher auf einen Eintrag in der Deskriptortabelle zeigt. Das Segment-Offset zeigt auf die dazugehörige Adresse in dem selektierten Segment. Aus welchen drei Teilen setzt sich ein Segmentselektor zusammen? Aus dem Index, der den Eintrag in der Deskriptortabelle referenziert, dem Table Indicator, welcher über globalem oder lokalem Adressraum entscheidet und den Privelege Level. TI - Table Indicator 0 = GDT (Global Deskriptor Table für den globalen Adreßraum) 1 = LDT (Local Deskriptor Table für den lokalen Adreßraum) RPL Requestor's Privilege Level Privilegstufe des Segments, auf welches der Selektor verweist Was ist ein Deskriptor? Deskriptoren sind Abbildungen zwischen der virtuellen bzw. logischen Adresse (Segmentselektor:Offset) und der linearen Adresse (Basisadresse und Offset). Aus der linearen Adresse wird dann die physikalische Adresse berechnet. (bei i286 war die lineare Adresse noch gleich der physikalischen Adresse, da es noch keine Paging-Einheit gab) Was steht alles in so einem Eintrag in der Deskriptortabelle? Die "normalen" Deskriptoren, welche einen normalen Adressraum (Daten-, Code- oder Stacksegment) beschreiben, enthalten die Basisadresse des Segmentes im Speicher die Zugriffsrechte die Länge des Segmentes Eine andere Klasse von Deskriptoren sind System-Segment-Deskriptoren und zur Ablaufsteuerung notwendige Deskriptoren. Erstere definieren Einsprungpunkte in spezielle System-Unterroutinen oder Gates. Letztere sind Deskriptoren für Task-State-Segmente oder Local-Deskriptor-Tables. Aktiv sind aber immer nur eine globale, eine lokale Interrupt-Beschreibertabelle und eine Interrupt-Beschreibertabelle. Was ist ein Gate? Gates sind spezielle Eintritts-Deskriptoren in Segmente höherer Privilegstufe. (Interrupt- oder Trap-Gate-Deskriptoren) Worin unterscheiden sich GDT und LDT? Die Global Descriptor Table einhält Segmente des globalen Adressraums, welcher für alle Tasks zur Verfügung steht. Dagegen sind mit Local Descriptor Table allokierte Segmente nur von den Host-Tasks selbst adressierbar. (privater Adressraum) Lokale Deskriptortabellen sind Grundlage für die Task-Isolation und daher extrem wichtig für Sicherheit und Segmentschutz. Beschreiben Sie den Aufbau einer Globalen Deskriptortabelle ... ... Globale C/D2 Globale Code-/Daten-Deskriptoren Globale C/D1 Globale Code-/Daten-Deskriptoren ... ... System D2 Gates bzw. TSS-Deskriptoren System D1 Gates bzw. TSS-Deskriptoren ... ... ... ... LDT 2 Lokale Deskriptoren für individuellen Task LDT 1 Lokale Deskriptoren für individuellen Task ... ... ... ... IDT 2 Interrupt/Exeption Gates bzw. Deskriptoren IDT 1 Interrupt/Exeption Gates bzw. Deskriptoren GTD_alias ermöglicht dynamischen Zugriff auf die GDT 0-Selektor Zugriff auf 0-Selektor führt zu Exeption Was unterscheidet Real-Mode und Protected-Mode? Im Real-Mode gibt es keine Deskriptoren und somit ist auch kein Segmentschutz möglich. Die Basisadresse berechnet sich einfach aus dem Segment-Register, welches maximal 1 MByte adressieren kann, da es nur 20 Bit breit ist. Im Protected-Mode werden die Basisadressen mittels Deskriptoren bestimmt. Auf Grund dieser Unterschiede sind folgende Merkmale für den Protected-Mode signifikant: Virtuelle Speicherverwaltung Speicherschutzmechanismen durch Segmentation (über Deskriptoren) Paging möglich echtes Multitasking möglich I/O-Privilegierung und privilegierte Befehle Was ist Paging und wie funktioniert es? Paging wird ab i386 vom Prozessor unterstützt und ist nichts weiter als eine Einteilung des Speichers in gleich große Seiten. Vorteil des virtuellen Speichers, welcher durch Mapping oder Paging erst möglich ist, sind für Anwendungen theoretisch unendlich großen Arbeitsspeicher. Grund dafür ist, dass der Tertiärspeicher als Zwischenspeicher für schlafende oder temporär nicht notwendige Seiten ausgenutzt wird. Es gibt ausgeklügelte Seitenerstetzungsalgorithmen, welche das Austauschen von Seiten übernehmen. Ein weiteres Problem was beim Paging gelöst werden muss, ist die eventuell entstehende Inkonsistenz. D ieses Problem wird wie bekanntermaßen üblich durch Dirty-Bits in den Pages gelöst. Verwirrend ist anfangs der Zusammenhang von Segmentierung und Paging. Letztendlich laufen beide Technologien gleichzeitig auf einem modernen System und ergänzen sich gegenseitig. Paging ist hinter den Segmentierungsvorgang geschalten, um Transparenz zu gewährleisten. Die durch die Segmentierung berechnete bzw. übergebene lineare Adresse entspricht ohne Paging der physikalischen. Falls Paging aktiv ist, muss noch etwas mehr getan werden. Die Umsetzung von Linearer in Physikalischer Adresse hängt vom verwendeten Paging ab. Normalerweise wird über die ersten Bits die Page-Table referenziert und über die folgenden der Pagetable-Eintrag, aus dem die Basisadresse geholt wird. Der Offset wird normalerweise beibehalten. Beschreiben Sie was bei einem Page-Fault intern alles abläuft? Während Abarbeitung einer Befehlssequenz erfolgen mehrere Seitenzugriffe Es erfolgt ein Zugriff auf eine Seite. Prozessor prüft die Seite (ist sie im Speicher?). Seite gibt Page Not Present State zurück (d.h. Seite nicht im Speicher) CPU löst Page Fault Exception aus (Siehe System-Aufruf-Deskriptoren) Betriebssystem gibt in Auftrag die Seite von Platte zu holen Prozessor aktiviert Festplattenhardware und positioniert Leseköpfe Seite wird über DMA-Transfer von Disk-To-free Memory übertragen Betriebssystem aktualisiert Pagetable einschließlich des TLB (flush TLB) Betriebssystem startet den unterbrochenen Befehl neu Nennen Sie Vorteile und Nachteile des Pagings gegenüber Segmentation-Only! Performanceerhöhung eines Multitasking-Betriebssystems Verwaltung der Swap-Datei wird durch die Verwendung konstanter Speicherblöcke einfacher nur die 4-KByte werden eingelagert, die tatsächlich benötigt werden und nicht das gesamte Segment Nachteile: Ausführung verzögert sich, weil die Adresse erst dekodiert werden muß bei Zugriff auf eine Seite/Page evtl. erst Einlagerung dieser vom Sekundärspeicher notwendig (Present-Bit) Wie kann man die Adressdekodierung beim Paging umgehen? Durch Translation Lookaside Buffer. Ein TLB ist ein assoziativer Vierwege-Cache, welcher die 32 Page-Table-Einträge aufnimmt, auf die der Prozessor zuletzt zugegriffen hat (LRU-Strategie). Ein TLB Eintrag besteht aus drei logischen Blöcken: Datenblock mit Page-Attributen und physikalische Basisadresse einer Page Tagblock enthält die oberen 17 Bit einer linearen Adresse und Schutz-Bits LRU-Block (Least Recently Used) zeigt letzten Zugriff an Page- und Segmentschutz Zuerst wirkt der Segmentschutz und danach Pageschutz. Pageschutz ist nur 2-stufig. Die inneren drei Privilegebenen sind beim Paging als Supervisor-Code geschützt. Die äußere Ebene ist User-Code. Ein Zugriffsversuch einer User-Page auf eine Supervisor-Page löst eine Exception aus. Was unterscheidet kooperatives und preemtives Multitasking? Beim kooperativen Multitasking entscheiden die Tasks selbst über die Umschaltung der Prozessorleistung. (Naives und Gutgläubiges Verfahren, daß an die Vernunft aller Tasks und somit aller Programmierer glaubt : ) Preemptives Multitasking ist echtes Multitasking. Ein externer Timer steuert die Umschaltung der Tasks. Die Tasks können somit keinen Einfluss auf die Betriebsmittelumschaltung nehmen. Kapitel 4 - Speicherhierarchie und Caches Was bedeutet die Eigenschaft Lokalität? Aus programmtechnischer Sicht wiederholen sich oft Befehle und ganze Programmteile. Somit werden Daten







Bei der totalen Sicherung wird der CPU-Status des unterbrochenen Programms komplett eingefroren.
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on


Parent (intermediate) annotation

Open it
totale Sicherung aller bislang nicht automatisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.)

Original toplevel document

Grundprinzipien der Rechnerarchitektur
rt das Big-Endian-Format. Falls Worte so in den Speicher passen, das keine Verschiebungen auftreten, heißt der Speicher aligned. Prüfen kann man dies durch die Formel Adresse mod Wortlänge = 0? <span>Kapitel 2 - Interrupts und DMA Klassifizieren Sie die verschiedenen Unterbrechungen! Wenn in der Literatur von Interrupts gesprochen wird, so werden oft externe, asynchrone Interrupts gemeint, welche meistens in Zusammenhang mit E/A-Geräten auftreten. Wie arbeiten Traps (Fangstellen?) Traps sind eine Art automatische Prozeduraufrufe, welche durch eine vom Programm verursachte Bedingung eingeleitet werden. Solch eine Bedingung kann z.B. Gleitkommaüberlauf, Schutzverletzung oder Stapelüberlauf. Findet ein Überlauf statt, so stoppt die Ablaufsteuerung die Ausführung und holt von einer bestimmten Stelle im Speicher die Adresse des Trap-Handlers (Prozedur), mit der dann der Programmcounter überschrieben wird. Wesentliches Merkmal eines Traps ist, daß es durch Ausnahmebedingungen ausgelöst wird, welche durch Hardware oder Mikroprogramme erkannt werden. Wie arbeiten Interrupts Interrupts sind Unterbrechungen der Ablaufsteuerung. Wie es für Traps Trap-Handler gibt, gibt es für Interrupts Interrupt-Handler. Nach Abarbeitung des Interrupt-Handlers wird die Kontrolle wieder an das Programm zurückgegeben. Der interne Zustand des Prozessors (IP, Register, ...) muss nun exakt wiederhergestellt werden. Der Unterschied zwischen Traps und Interrupts ist nun, daß Traps synchron mit dem ausgeführten Programm laufen. Deshalb werden sie auch erst nach der Befehlsausführung erkannt und ausgeführt. Asynchrone Interrupts sind dagegen unabhängig vom gerade ausgeführten Programm. Interrupt’s stammen von echten physikalischen INT-Quellen wie z.B. IRQ3 von COM1 kommt. Diese springen über ein Interrupt-Gate. Interrupt’s die per Software mit INT-Befehl ausgelöst werden, springen über Trap-Gates! Wenn ein Interrupt ein Interrupt-Gate durchläuft, wird das IF=0 automatisch gesetzt, d.h. es gehen überhaupt keine Interrupts mehr durch. Asynchrone Interrupts können also nicht unterbrochen werden. Trap-Gates dürfen unterbrochen werden, da sie nicht zeitkritisch sind. Interrupt- und Trap-Gates führen nicht zu Taskwechsel über ein TSS. Das retten der Register ist dem INT-Handler überlassen. Was sind Software Interrupts? Software-Interrupts werden von Programmen mit Hilfe von speziellen Maschinenbefehlen aufgerufen. Dabei müssen diese nur eine Nummer für das benötigte Interrupt kennen. Über diese Nummer wird in der Interrupt-Vektor-Tabelle die Adresse des Interrupt-Unterprogrammes (ISR) referenziert und ausgeführt. Was versteht man unter internen und externen Interrupts? Externe Interrupts sind asynchron, wie nichtvektorisierte und vektorisierte Interrupts. Interne sind synchron, wie Software Interrupts oder Exection-Traps (Reaktionen auf interne Fehler wie FPU-Errors oder Page-Faults). Was ist Polling? Polling ist das zyklische Abfragen von einen oder mehreren E/A-Devices zur Feststellung der Kommunikationsbereitschaft bzw. zum Einholen von Kommunikationswünschen. Vorteile des Pollings Nachteile des Pollings Einfach zu Implementieren Hoher Programm-Overhead Kommunikationsanforderungen erfolgen synchron zum Programmablauf Die meisten Anfragen an die Geräte sind unnötig Je mehr Geräte am Bus hängen, um so mehr steigt Reaktionszeit. Priorisierung bei zeitgleichen Anfragen erfordert zusätzlichen Zeitaufwand Aufgrund der vielen Nachteile sollte besser eine asynchrone Kommunikation mit den Geräten durch die Hardware unterstützt werden (Interrupts). Das Interrupt-Prinzip Es kann auch über eine Art "hardware-gestütztes Polling" über spezielle Interrupt-Signalleitungen eine Kommunikationsanforderung festgestellt werden. Dazu muss aber die Befehlsverarbeitungschleife um eine Unterbrechungsanfrage erweitert werden. Erklären Sie den Unterschied zwischen vektorisierten und nichtvektorisierten Interrupts! Man unterscheidet vektorisierten und nichtvektorisierten Interrupt. Bei nichtvektorisierten Interrupts wird dem Interruptsignal eine feste Adresse zugeordnet. Bei vektorisierten Interrupts wird dynamisch eine wahlfreie Adresse zugeordnet, welche durch die CPU über ein definiertes Protokoll vom Datenbus gelesen wird. Was passiert beim Auftreten eines Interrupts? 1. Sperren weiterer Unterbrechungen mit gleicher oder geringerer Priotität Unterbrechungen mit höherer Wichtigkeit dürfen normalerweise solche mit geringerer Wichtigkeit wieder unterbrechen 2. Rettung wichtiger Register-Informationen(Prozessorstatus) alle Prozessor-Register retten, die durch die Interruptbehandlung überschrieben würden heute gibt es dafür spezielle Maschinenbefehle 3. Bestimmen der Interruptquelle (durch Hardware realisiert) 4. Laden des zugehörigen Interruptvektors d.h. das Herstellen des Anfangszustandes für gewählte Interruptroutine 5. Abarbeitung der Interruptroutine Retten weiterer Zustandsinformationen, sofern nicht durch Hardware realisiert meistens Übernahme weiterer Parameter von definierten Stellen (bei Systemaufruf Ruf-Nr. und weitere Parameter oder bei Geräte-Interrupt Gerätestatusbits wie E/A Fortschritt, Fehler etc.) eigentliche Behandlung des Interrupts, z.B. Setzen eines Flags (z.B. bei Gleitkommaüberlauf oder Aufruf zum Rückpositionieren und erneutem Lesen bei Lesefehler bei Magnetbandkassette (komplizierterer Fall) 6. Rückkehr zur unterbrochenen Aufgabe entweder Rückspeichern der geretteten Registerinformationen, d.h. Wiederherstellen des Prozessorzustandes oder Bearbeitung einer neuen Aufgabe, z.B. bei Uhrinterrupt nach Ablauf einer Zeitscheibe oder Zustand "HALT" nach schwerem Fehler, z.B. Spannungsausfall (abort) Welche beiden Zustandssicherungskonzepte gibt es totale Sicherung aller bislang nicht automatisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.) partielle Sicherung der im weiteren Verlauf nicht gesicherten Register der CPU-Status des unterbrochenen Programms wird teilweise eingefroren es wird nur der wirklich von Änderungen betroffene Anteil gesichert der Programmzustand ist damit nicht leicht zugreifbar weit verbreitet bei Spezialzweckbetriebssystemen Was stellt das Hauptproblem bei Interrupts dar Interrupts verhalten sich nicht deterministisch. D.h. ihre Abarbeitungszeit variiert. Sie sollte trotzdem so gering wie möglich gehalten werden. Warum wird DMA oft Interrupts vorgezogen? Zwar befreien Interrupts die Prozessoren vom Warten auf E/A Ereignisse, aber vektorisierte Interrupts benötigen viele Taktzyklen zu ihrer Abarbeitung. Dieser Overhead steigt natürlich, um so weniger Datenmengen bei einer Interruptauslösung übertragen werden. Interrupts werden erst nach der Befehlsabarbeitung erkannt und ausgeführt. Dies ist ein Problem bei Echtzeitanwendungen, da sich diese Verzögerung negativ auswirken kann. Außerdem kommt es durch Interrupts bei Instruction-Set-Parallismus oft zu Pipeline-Neustarts. Die Lösung dieser Probleme wäre ein direkter Speicherzugriff eines Devices, da so der Prozessor komplett umgangen werden kann. Wie kann DMA implementiert werden? Zentral Ein zentraler DMA-Controller steht allen Geräten zu Verfügung. Dezentral: Jede E/A-Einheit hat ihren eigenen DMA-Controller implementiert und kann selbst Busmaster werden Probleme bei DMA treten vor allem durch ihre Unabhängigkeit und die dadurch notwendigen Schutzmaßnahmen auf. Ein DMA-Controller wirkt wie ein weiterer Prozessor am Bus. Um Inkonsistenzen im Speicher zu vermeiden, muss ein DMA-Controller eng mit dem Speichermanagment des Systems zusammenarbeiten. Was ist Memory-Mapped I/O? Ein I/O Controller besteht aus einer Vielzahl von Registern, welche auf zwei Varianten adressiert werden können: Memory-Mapped I/O, um den konventionellen Adr




Bei der totalen Sicherung werden auch invariante Anteile des CPU-Status des unterbrochenen Programms gesichert.
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on


Parent (intermediate) annotation

Open it
totale Sicherung aller bislang nicht automatisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.)

Original toplevel document

Grundprinzipien der Rechnerarchitektur
rt das Big-Endian-Format. Falls Worte so in den Speicher passen, das keine Verschiebungen auftreten, heißt der Speicher aligned. Prüfen kann man dies durch die Formel Adresse mod Wortlänge = 0? <span>Kapitel 2 - Interrupts und DMA Klassifizieren Sie die verschiedenen Unterbrechungen! Wenn in der Literatur von Interrupts gesprochen wird, so werden oft externe, asynchrone Interrupts gemeint, welche meistens in Zusammenhang mit E/A-Geräten auftreten. Wie arbeiten Traps (Fangstellen?) Traps sind eine Art automatische Prozeduraufrufe, welche durch eine vom Programm verursachte Bedingung eingeleitet werden. Solch eine Bedingung kann z.B. Gleitkommaüberlauf, Schutzverletzung oder Stapelüberlauf. Findet ein Überlauf statt, so stoppt die Ablaufsteuerung die Ausführung und holt von einer bestimmten Stelle im Speicher die Adresse des Trap-Handlers (Prozedur), mit der dann der Programmcounter überschrieben wird. Wesentliches Merkmal eines Traps ist, daß es durch Ausnahmebedingungen ausgelöst wird, welche durch Hardware oder Mikroprogramme erkannt werden. Wie arbeiten Interrupts Interrupts sind Unterbrechungen der Ablaufsteuerung. Wie es für Traps Trap-Handler gibt, gibt es für Interrupts Interrupt-Handler. Nach Abarbeitung des Interrupt-Handlers wird die Kontrolle wieder an das Programm zurückgegeben. Der interne Zustand des Prozessors (IP, Register, ...) muss nun exakt wiederhergestellt werden. Der Unterschied zwischen Traps und Interrupts ist nun, daß Traps synchron mit dem ausgeführten Programm laufen. Deshalb werden sie auch erst nach der Befehlsausführung erkannt und ausgeführt. Asynchrone Interrupts sind dagegen unabhängig vom gerade ausgeführten Programm. Interrupt’s stammen von echten physikalischen INT-Quellen wie z.B. IRQ3 von COM1 kommt. Diese springen über ein Interrupt-Gate. Interrupt’s die per Software mit INT-Befehl ausgelöst werden, springen über Trap-Gates! Wenn ein Interrupt ein Interrupt-Gate durchläuft, wird das IF=0 automatisch gesetzt, d.h. es gehen überhaupt keine Interrupts mehr durch. Asynchrone Interrupts können also nicht unterbrochen werden. Trap-Gates dürfen unterbrochen werden, da sie nicht zeitkritisch sind. Interrupt- und Trap-Gates führen nicht zu Taskwechsel über ein TSS. Das retten der Register ist dem INT-Handler überlassen. Was sind Software Interrupts? Software-Interrupts werden von Programmen mit Hilfe von speziellen Maschinenbefehlen aufgerufen. Dabei müssen diese nur eine Nummer für das benötigte Interrupt kennen. Über diese Nummer wird in der Interrupt-Vektor-Tabelle die Adresse des Interrupt-Unterprogrammes (ISR) referenziert und ausgeführt. Was versteht man unter internen und externen Interrupts? Externe Interrupts sind asynchron, wie nichtvektorisierte und vektorisierte Interrupts. Interne sind synchron, wie Software Interrupts oder Exection-Traps (Reaktionen auf interne Fehler wie FPU-Errors oder Page-Faults). Was ist Polling? Polling ist das zyklische Abfragen von einen oder mehreren E/A-Devices zur Feststellung der Kommunikationsbereitschaft bzw. zum Einholen von Kommunikationswünschen. Vorteile des Pollings Nachteile des Pollings Einfach zu Implementieren Hoher Programm-Overhead Kommunikationsanforderungen erfolgen synchron zum Programmablauf Die meisten Anfragen an die Geräte sind unnötig Je mehr Geräte am Bus hängen, um so mehr steigt Reaktionszeit. Priorisierung bei zeitgleichen Anfragen erfordert zusätzlichen Zeitaufwand Aufgrund der vielen Nachteile sollte besser eine asynchrone Kommunikation mit den Geräten durch die Hardware unterstützt werden (Interrupts). Das Interrupt-Prinzip Es kann auch über eine Art "hardware-gestütztes Polling" über spezielle Interrupt-Signalleitungen eine Kommunikationsanforderung festgestellt werden. Dazu muss aber die Befehlsverarbeitungschleife um eine Unterbrechungsanfrage erweitert werden. Erklären Sie den Unterschied zwischen vektorisierten und nichtvektorisierten Interrupts! Man unterscheidet vektorisierten und nichtvektorisierten Interrupt. Bei nichtvektorisierten Interrupts wird dem Interruptsignal eine feste Adresse zugeordnet. Bei vektorisierten Interrupts wird dynamisch eine wahlfreie Adresse zugeordnet, welche durch die CPU über ein definiertes Protokoll vom Datenbus gelesen wird. Was passiert beim Auftreten eines Interrupts? 1. Sperren weiterer Unterbrechungen mit gleicher oder geringerer Priotität Unterbrechungen mit höherer Wichtigkeit dürfen normalerweise solche mit geringerer Wichtigkeit wieder unterbrechen 2. Rettung wichtiger Register-Informationen(Prozessorstatus) alle Prozessor-Register retten, die durch die Interruptbehandlung überschrieben würden heute gibt es dafür spezielle Maschinenbefehle 3. Bestimmen der Interruptquelle (durch Hardware realisiert) 4. Laden des zugehörigen Interruptvektors d.h. das Herstellen des Anfangszustandes für gewählte Interruptroutine 5. Abarbeitung der Interruptroutine Retten weiterer Zustandsinformationen, sofern nicht durch Hardware realisiert meistens Übernahme weiterer Parameter von definierten Stellen (bei Systemaufruf Ruf-Nr. und weitere Parameter oder bei Geräte-Interrupt Gerätestatusbits wie E/A Fortschritt, Fehler etc.) eigentliche Behandlung des Interrupts, z.B. Setzen eines Flags (z.B. bei Gleitkommaüberlauf oder Aufruf zum Rückpositionieren und erneutem Lesen bei Lesefehler bei Magnetbandkassette (komplizierterer Fall) 6. Rückkehr zur unterbrochenen Aufgabe entweder Rückspeichern der geretteten Registerinformationen, d.h. Wiederherstellen des Prozessorzustandes oder Bearbeitung einer neuen Aufgabe, z.B. bei Uhrinterrupt nach Ablauf einer Zeitscheibe oder Zustand "HALT" nach schwerem Fehler, z.B. Spannungsausfall (abort) Welche beiden Zustandssicherungskonzepte gibt es totale Sicherung aller bislang nicht automatisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.) partielle Sicherung der im weiteren Verlauf nicht gesicherten Register der CPU-Status des unterbrochenen Programms wird teilweise eingefroren es wird nur der wirklich von Änderungen betroffene Anteil gesichert der Programmzustand ist damit nicht leicht zugreifbar weit verbreitet bei Spezialzweckbetriebssystemen Was stellt das Hauptproblem bei Interrupts dar Interrupts verhalten sich nicht deterministisch. D.h. ihre Abarbeitungszeit variiert. Sie sollte trotzdem so gering wie möglich gehalten werden. Warum wird DMA oft Interrupts vorgezogen? Zwar befreien Interrupts die Prozessoren vom Warten auf E/A Ereignisse, aber vektorisierte Interrupts benötigen viele Taktzyklen zu ihrer Abarbeitung. Dieser Overhead steigt natürlich, um so weniger Datenmengen bei einer Interruptauslösung übertragen werden. Interrupts werden erst nach der Befehlsabarbeitung erkannt und ausgeführt. Dies ist ein Problem bei Echtzeitanwendungen, da sich diese Verzögerung negativ auswirken kann. Außerdem kommt es durch Interrupts bei Instruction-Set-Parallismus oft zu Pipeline-Neustarts. Die Lösung dieser Probleme wäre ein direkter Speicherzugriff eines Devices, da so der Prozessor komplett umgangen werden kann. Wie kann DMA implementiert werden? Zentral Ein zentraler DMA-Controller steht allen Geräten zu Verfügung. Dezentral: Jede E/A-Einheit hat ihren eigenen DMA-Controller implementiert und kann selbst Busmaster werden Probleme bei DMA treten vor allem durch ihre Unabhängigkeit und die dadurch notwendigen Schutzmaßnahmen auf. Ein DMA-Controller wirkt wie ein weiterer Prozessor am Bus. Um Inkonsistenzen im Speicher zu vermeiden, muss ein DMA-Controller eng mit dem Speichermanagment des Systems zusammenarbeiten. Was ist Memory-Mapped I/O? Ein I/O Controller besteht aus einer Vielzahl von Registern, welche auf zwei Varianten adressiert werden können: Memory-Mapped I/O, um den konventionellen Adr




Bei der totalen Sicherung ist der Programmzustand des unterbrochenen Programms leicht zugreifbar.
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on


Parent (intermediate) annotation

Open it
totale Sicherung aller bislang nicht automatisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.) <span>

Original toplevel document

Grundprinzipien der Rechnerarchitektur
rt das Big-Endian-Format. Falls Worte so in den Speicher passen, das keine Verschiebungen auftreten, heißt der Speicher aligned. Prüfen kann man dies durch die Formel Adresse mod Wortlänge = 0? <span>Kapitel 2 - Interrupts und DMA Klassifizieren Sie die verschiedenen Unterbrechungen! Wenn in der Literatur von Interrupts gesprochen wird, so werden oft externe, asynchrone Interrupts gemeint, welche meistens in Zusammenhang mit E/A-Geräten auftreten. Wie arbeiten Traps (Fangstellen?) Traps sind eine Art automatische Prozeduraufrufe, welche durch eine vom Programm verursachte Bedingung eingeleitet werden. Solch eine Bedingung kann z.B. Gleitkommaüberlauf, Schutzverletzung oder Stapelüberlauf. Findet ein Überlauf statt, so stoppt die Ablaufsteuerung die Ausführung und holt von einer bestimmten Stelle im Speicher die Adresse des Trap-Handlers (Prozedur), mit der dann der Programmcounter überschrieben wird. Wesentliches Merkmal eines Traps ist, daß es durch Ausnahmebedingungen ausgelöst wird, welche durch Hardware oder Mikroprogramme erkannt werden. Wie arbeiten Interrupts Interrupts sind Unterbrechungen der Ablaufsteuerung. Wie es für Traps Trap-Handler gibt, gibt es für Interrupts Interrupt-Handler. Nach Abarbeitung des Interrupt-Handlers wird die Kontrolle wieder an das Programm zurückgegeben. Der interne Zustand des Prozessors (IP, Register, ...) muss nun exakt wiederhergestellt werden. Der Unterschied zwischen Traps und Interrupts ist nun, daß Traps synchron mit dem ausgeführten Programm laufen. Deshalb werden sie auch erst nach der Befehlsausführung erkannt und ausgeführt. Asynchrone Interrupts sind dagegen unabhängig vom gerade ausgeführten Programm. Interrupt’s stammen von echten physikalischen INT-Quellen wie z.B. IRQ3 von COM1 kommt. Diese springen über ein Interrupt-Gate. Interrupt’s die per Software mit INT-Befehl ausgelöst werden, springen über Trap-Gates! Wenn ein Interrupt ein Interrupt-Gate durchläuft, wird das IF=0 automatisch gesetzt, d.h. es gehen überhaupt keine Interrupts mehr durch. Asynchrone Interrupts können also nicht unterbrochen werden. Trap-Gates dürfen unterbrochen werden, da sie nicht zeitkritisch sind. Interrupt- und Trap-Gates führen nicht zu Taskwechsel über ein TSS. Das retten der Register ist dem INT-Handler überlassen. Was sind Software Interrupts? Software-Interrupts werden von Programmen mit Hilfe von speziellen Maschinenbefehlen aufgerufen. Dabei müssen diese nur eine Nummer für das benötigte Interrupt kennen. Über diese Nummer wird in der Interrupt-Vektor-Tabelle die Adresse des Interrupt-Unterprogrammes (ISR) referenziert und ausgeführt. Was versteht man unter internen und externen Interrupts? Externe Interrupts sind asynchron, wie nichtvektorisierte und vektorisierte Interrupts. Interne sind synchron, wie Software Interrupts oder Exection-Traps (Reaktionen auf interne Fehler wie FPU-Errors oder Page-Faults). Was ist Polling? Polling ist das zyklische Abfragen von einen oder mehreren E/A-Devices zur Feststellung der Kommunikationsbereitschaft bzw. zum Einholen von Kommunikationswünschen. Vorteile des Pollings Nachteile des Pollings Einfach zu Implementieren Hoher Programm-Overhead Kommunikationsanforderungen erfolgen synchron zum Programmablauf Die meisten Anfragen an die Geräte sind unnötig Je mehr Geräte am Bus hängen, um so mehr steigt Reaktionszeit. Priorisierung bei zeitgleichen Anfragen erfordert zusätzlichen Zeitaufwand Aufgrund der vielen Nachteile sollte besser eine asynchrone Kommunikation mit den Geräten durch die Hardware unterstützt werden (Interrupts). Das Interrupt-Prinzip Es kann auch über eine Art "hardware-gestütztes Polling" über spezielle Interrupt-Signalleitungen eine Kommunikationsanforderung festgestellt werden. Dazu muss aber die Befehlsverarbeitungschleife um eine Unterbrechungsanfrage erweitert werden. Erklären Sie den Unterschied zwischen vektorisierten und nichtvektorisierten Interrupts! Man unterscheidet vektorisierten und nichtvektorisierten Interrupt. Bei nichtvektorisierten Interrupts wird dem Interruptsignal eine feste Adresse zugeordnet. Bei vektorisierten Interrupts wird dynamisch eine wahlfreie Adresse zugeordnet, welche durch die CPU über ein definiertes Protokoll vom Datenbus gelesen wird. Was passiert beim Auftreten eines Interrupts? 1. Sperren weiterer Unterbrechungen mit gleicher oder geringerer Priotität Unterbrechungen mit höherer Wichtigkeit dürfen normalerweise solche mit geringerer Wichtigkeit wieder unterbrechen 2. Rettung wichtiger Register-Informationen(Prozessorstatus) alle Prozessor-Register retten, die durch die Interruptbehandlung überschrieben würden heute gibt es dafür spezielle Maschinenbefehle 3. Bestimmen der Interruptquelle (durch Hardware realisiert) 4. Laden des zugehörigen Interruptvektors d.h. das Herstellen des Anfangszustandes für gewählte Interruptroutine 5. Abarbeitung der Interruptroutine Retten weiterer Zustandsinformationen, sofern nicht durch Hardware realisiert meistens Übernahme weiterer Parameter von definierten Stellen (bei Systemaufruf Ruf-Nr. und weitere Parameter oder bei Geräte-Interrupt Gerätestatusbits wie E/A Fortschritt, Fehler etc.) eigentliche Behandlung des Interrupts, z.B. Setzen eines Flags (z.B. bei Gleitkommaüberlauf oder Aufruf zum Rückpositionieren und erneutem Lesen bei Lesefehler bei Magnetbandkassette (komplizierterer Fall) 6. Rückkehr zur unterbrochenen Aufgabe entweder Rückspeichern der geretteten Registerinformationen, d.h. Wiederherstellen des Prozessorzustandes oder Bearbeitung einer neuen Aufgabe, z.B. bei Uhrinterrupt nach Ablauf einer Zeitscheibe oder Zustand "HALT" nach schwerem Fehler, z.B. Spannungsausfall (abort) Welche beiden Zustandssicherungskonzepte gibt es totale Sicherung aller bislang nicht automatisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.) partielle Sicherung der im weiteren Verlauf nicht gesicherten Register der CPU-Status des unterbrochenen Programms wird teilweise eingefroren es wird nur der wirklich von Änderungen betroffene Anteil gesichert der Programmzustand ist damit nicht leicht zugreifbar weit verbreitet bei Spezialzweckbetriebssystemen Was stellt das Hauptproblem bei Interrupts dar Interrupts verhalten sich nicht deterministisch. D.h. ihre Abarbeitungszeit variiert. Sie sollte trotzdem so gering wie möglich gehalten werden. Warum wird DMA oft Interrupts vorgezogen? Zwar befreien Interrupts die Prozessoren vom Warten auf E/A Ereignisse, aber vektorisierte Interrupts benötigen viele Taktzyklen zu ihrer Abarbeitung. Dieser Overhead steigt natürlich, um so weniger Datenmengen bei einer Interruptauslösung übertragen werden. Interrupts werden erst nach der Befehlsabarbeitung erkannt und ausgeführt. Dies ist ein Problem bei Echtzeitanwendungen, da sich diese Verzögerung negativ auswirken kann. Außerdem kommt es durch Interrupts bei Instruction-Set-Parallismus oft zu Pipeline-Neustarts. Die Lösung dieser Probleme wäre ein direkter Speicherzugriff eines Devices, da so der Prozessor komplett umgangen werden kann. Wie kann DMA implementiert werden? Zentral Ein zentraler DMA-Controller steht allen Geräten zu Verfügung. Dezentral: Jede E/A-Einheit hat ihren eigenen DMA-Controller implementiert und kann selbst Busmaster werden Probleme bei DMA treten vor allem durch ihre Unabhängigkeit und die dadurch notwendigen Schutzmaßnahmen auf. Ein DMA-Controller wirkt wie ein weiterer Prozessor am Bus. Um Inkonsistenzen im Speicher zu vermeiden, muss ein DMA-Controller eng mit dem Speichermanagment des Systems zusammenarbeiten. Was ist Memory-Mapped I/O? Ein I/O Controller besteht aus einer Vielzahl von Registern, welche auf zwei Varianten adressiert werden können: Memory-Mapped I/O, um den konventionellen Adr




Die totale Sicherung ist bei Allzweckbetriebssystemen verbreitet.
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on


Parent (intermediate) annotation

Open it
matisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar <span>weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.) <span>

Original toplevel document

Grundprinzipien der Rechnerarchitektur
rt das Big-Endian-Format. Falls Worte so in den Speicher passen, das keine Verschiebungen auftreten, heißt der Speicher aligned. Prüfen kann man dies durch die Formel Adresse mod Wortlänge = 0? <span>Kapitel 2 - Interrupts und DMA Klassifizieren Sie die verschiedenen Unterbrechungen! Wenn in der Literatur von Interrupts gesprochen wird, so werden oft externe, asynchrone Interrupts gemeint, welche meistens in Zusammenhang mit E/A-Geräten auftreten. Wie arbeiten Traps (Fangstellen?) Traps sind eine Art automatische Prozeduraufrufe, welche durch eine vom Programm verursachte Bedingung eingeleitet werden. Solch eine Bedingung kann z.B. Gleitkommaüberlauf, Schutzverletzung oder Stapelüberlauf. Findet ein Überlauf statt, so stoppt die Ablaufsteuerung die Ausführung und holt von einer bestimmten Stelle im Speicher die Adresse des Trap-Handlers (Prozedur), mit der dann der Programmcounter überschrieben wird. Wesentliches Merkmal eines Traps ist, daß es durch Ausnahmebedingungen ausgelöst wird, welche durch Hardware oder Mikroprogramme erkannt werden. Wie arbeiten Interrupts Interrupts sind Unterbrechungen der Ablaufsteuerung. Wie es für Traps Trap-Handler gibt, gibt es für Interrupts Interrupt-Handler. Nach Abarbeitung des Interrupt-Handlers wird die Kontrolle wieder an das Programm zurückgegeben. Der interne Zustand des Prozessors (IP, Register, ...) muss nun exakt wiederhergestellt werden. Der Unterschied zwischen Traps und Interrupts ist nun, daß Traps synchron mit dem ausgeführten Programm laufen. Deshalb werden sie auch erst nach der Befehlsausführung erkannt und ausgeführt. Asynchrone Interrupts sind dagegen unabhängig vom gerade ausgeführten Programm. Interrupt’s stammen von echten physikalischen INT-Quellen wie z.B. IRQ3 von COM1 kommt. Diese springen über ein Interrupt-Gate. Interrupt’s die per Software mit INT-Befehl ausgelöst werden, springen über Trap-Gates! Wenn ein Interrupt ein Interrupt-Gate durchläuft, wird das IF=0 automatisch gesetzt, d.h. es gehen überhaupt keine Interrupts mehr durch. Asynchrone Interrupts können also nicht unterbrochen werden. Trap-Gates dürfen unterbrochen werden, da sie nicht zeitkritisch sind. Interrupt- und Trap-Gates führen nicht zu Taskwechsel über ein TSS. Das retten der Register ist dem INT-Handler überlassen. Was sind Software Interrupts? Software-Interrupts werden von Programmen mit Hilfe von speziellen Maschinenbefehlen aufgerufen. Dabei müssen diese nur eine Nummer für das benötigte Interrupt kennen. Über diese Nummer wird in der Interrupt-Vektor-Tabelle die Adresse des Interrupt-Unterprogrammes (ISR) referenziert und ausgeführt. Was versteht man unter internen und externen Interrupts? Externe Interrupts sind asynchron, wie nichtvektorisierte und vektorisierte Interrupts. Interne sind synchron, wie Software Interrupts oder Exection-Traps (Reaktionen auf interne Fehler wie FPU-Errors oder Page-Faults). Was ist Polling? Polling ist das zyklische Abfragen von einen oder mehreren E/A-Devices zur Feststellung der Kommunikationsbereitschaft bzw. zum Einholen von Kommunikationswünschen. Vorteile des Pollings Nachteile des Pollings Einfach zu Implementieren Hoher Programm-Overhead Kommunikationsanforderungen erfolgen synchron zum Programmablauf Die meisten Anfragen an die Geräte sind unnötig Je mehr Geräte am Bus hängen, um so mehr steigt Reaktionszeit. Priorisierung bei zeitgleichen Anfragen erfordert zusätzlichen Zeitaufwand Aufgrund der vielen Nachteile sollte besser eine asynchrone Kommunikation mit den Geräten durch die Hardware unterstützt werden (Interrupts). Das Interrupt-Prinzip Es kann auch über eine Art "hardware-gestütztes Polling" über spezielle Interrupt-Signalleitungen eine Kommunikationsanforderung festgestellt werden. Dazu muss aber die Befehlsverarbeitungschleife um eine Unterbrechungsanfrage erweitert werden. Erklären Sie den Unterschied zwischen vektorisierten und nichtvektorisierten Interrupts! Man unterscheidet vektorisierten und nichtvektorisierten Interrupt. Bei nichtvektorisierten Interrupts wird dem Interruptsignal eine feste Adresse zugeordnet. Bei vektorisierten Interrupts wird dynamisch eine wahlfreie Adresse zugeordnet, welche durch die CPU über ein definiertes Protokoll vom Datenbus gelesen wird. Was passiert beim Auftreten eines Interrupts? 1. Sperren weiterer Unterbrechungen mit gleicher oder geringerer Priotität Unterbrechungen mit höherer Wichtigkeit dürfen normalerweise solche mit geringerer Wichtigkeit wieder unterbrechen 2. Rettung wichtiger Register-Informationen(Prozessorstatus) alle Prozessor-Register retten, die durch die Interruptbehandlung überschrieben würden heute gibt es dafür spezielle Maschinenbefehle 3. Bestimmen der Interruptquelle (durch Hardware realisiert) 4. Laden des zugehörigen Interruptvektors d.h. das Herstellen des Anfangszustandes für gewählte Interruptroutine 5. Abarbeitung der Interruptroutine Retten weiterer Zustandsinformationen, sofern nicht durch Hardware realisiert meistens Übernahme weiterer Parameter von definierten Stellen (bei Systemaufruf Ruf-Nr. und weitere Parameter oder bei Geräte-Interrupt Gerätestatusbits wie E/A Fortschritt, Fehler etc.) eigentliche Behandlung des Interrupts, z.B. Setzen eines Flags (z.B. bei Gleitkommaüberlauf oder Aufruf zum Rückpositionieren und erneutem Lesen bei Lesefehler bei Magnetbandkassette (komplizierterer Fall) 6. Rückkehr zur unterbrochenen Aufgabe entweder Rückspeichern der geretteten Registerinformationen, d.h. Wiederherstellen des Prozessorzustandes oder Bearbeitung einer neuen Aufgabe, z.B. bei Uhrinterrupt nach Ablauf einer Zeitscheibe oder Zustand "HALT" nach schwerem Fehler, z.B. Spannungsausfall (abort) Welche beiden Zustandssicherungskonzepte gibt es totale Sicherung aller bislang nicht automatisch gesicherten Register der CPU-Status des unterbrochenen Programms wird komplett eingefroren auch die invarianten Anteile werden gesichert, der Programmzustand ist damit leicht zugreifbar weit verbreitet bei Allzweckbetriebssystemen (z.B. UNIX & Co.) partielle Sicherung der im weiteren Verlauf nicht gesicherten Register der CPU-Status des unterbrochenen Programms wird teilweise eingefroren es wird nur der wirklich von Änderungen betroffene Anteil gesichert der Programmzustand ist damit nicht leicht zugreifbar weit verbreitet bei Spezialzweckbetriebssystemen Was stellt das Hauptproblem bei Interrupts dar Interrupts verhalten sich nicht deterministisch. D.h. ihre Abarbeitungszeit variiert. Sie sollte trotzdem so gering wie möglich gehalten werden. Warum wird DMA oft Interrupts vorgezogen? Zwar befreien Interrupts die Prozessoren vom Warten auf E/A Ereignisse, aber vektorisierte Interrupts benötigen viele Taktzyklen zu ihrer Abarbeitung. Dieser Overhead steigt natürlich, um so weniger Datenmengen bei einer Interruptauslösung übertragen werden. Interrupts werden erst nach der Befehlsabarbeitung erkannt und ausgeführt. Dies ist ein Problem bei Echtzeitanwendungen, da sich diese Verzögerung negativ auswirken kann. Außerdem kommt es durch Interrupts bei Instruction-Set-Parallismus oft zu Pipeline-Neustarts. Die Lösung dieser Probleme wäre ein direkter Speicherzugriff eines Devices, da so der Prozessor komplett umgangen werden kann. Wie kann DMA implementiert werden? Zentral Ein zentraler DMA-Controller steht allen Geräten zu Verfügung. Dezentral: Jede E/A-Einheit hat ihren eigenen DMA-Controller implementiert und kann selbst Busmaster werden Probleme bei DMA treten vor allem durch ihre Unabhängigkeit und die dadurch notwendigen Schutzmaßnahmen auf. Ein DMA-Controller wirkt wie ein weiterer Prozessor am Bus. Um Inkonsistenzen im Speicher zu vermeiden, muss ein DMA-Controller eng mit dem Speichermanagment des Systems zusammenarbeiten. Was ist Memory-Mapped I/O? Ein I/O Controller besteht aus einer Vielzahl von Registern, welche auf zwei Varianten adressiert werden können: Memory-Mapped I/O, um den konventionellen Adr




System architecture

  • High-level view of complete computing system
  • Example: For a desktop computer, it includes the components CPU, memory, I/O, and interconnection paths between them System architecture
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




Instruction set architecture (ISA)

  • Interface between hardware and low-level software
  • Comprises everything compiler designer (assembler programmer) need to know to write correct program
Property Description
Operations

What categories of operations exist?

Examples: data transfer, arithmetic, logical, control, floating point

Class

Where are operands of ALU-instructions located?

Examples: register, memory

Memory addressing

What is smallest number of bytes I can access?
Must data be aligned?
What is byte order in memory?

Examples: byte addressing, memory alignment, byte order (endianness)

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




Microarchitecture

  • Organization of processor implementing the ISA
  • Includes major functional units, their interconnection, and control
  • Different microarchitectures can implement same ISA
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




For a particular layer, different implementations are possible

For the layer above, all different implementations (ideally) look the same

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs




C is pure procedural programming language
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs





#has-images
statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on




O documento explica diferentes métodos de avaliação de desempenho, tanto tradicionais quanto modernos:

- Tradicionais: Escala gráfica, Escolha forçada, Incidente crítico, Pesquisa de campo.
- Modernos: Avaliação 180 graus, Avaliação 360 graus e Avaliação Participativa por Objetivos (APPO).

A Avaliação 180 graus inclui autoavaliação e a avaliação do gestor e pares. A Avaliação 360 graus envolve também subordinados e stakeholders externos. A APPO é usada no Judiciário, onde metas são definidas com participação ativa do avaliado.

Esses métodos visam uma visão mais abrangente e precisa do desempenho.

statusnot read reprioritisations
last reprioritisation on suggested re-reading day
started reading on finished reading on

pdf

cannot see any pdfs